[m]y' = \frac{2^{\ln(4x-2)} \cdot \ln 2 \cdot 4/(4x-2) \cdot \sin(x-5)^3 - 2^{\ln(4x-2)} \cos(x-5)^3 \cdot 3(x-5)^2}{\sin^2(x-5)^3}[/m]
[m]y' = \frac{2^{\ln(4x-2)} \cdot [4\ln 2 /(4x-2) \cdot \sin(x-5)^3 - 3(x-5)^2 \cos(x-5)^3]}{\sin^2(x-5)^3}[/m]
д) [m]y=(x-1)^{-2} arccos(2x)[/m]
[m]y' = -2(x-1)^{-3}arccos(2x) + (x-1)^{-2} \cdot (-\frac{2}{\sqrt{1-4x^2}})[/m]
[m]y' = -2(x-1)^{-3} \cdot (arccos(2x) + \frac{x-1}{\sqrt{1-4x^2}})[/m]