[m]\Delta = \begin{vmatrix}
-1 & 2 & -3 \\
3 & -1 & -2 \\
2 & 1 & 3 \\
\end{vmatrix} =[/m]
= (-1)(-1)*3 + (-3)*3*1 + 2*2(-2) - (-3)(-1)*2 - (-1)(-2)*1 - 3*2*3 =
= 3 - 9 - 8 - 6 - 2 - 18 = -40
Определители переменных:
[m]\Delta_{x1} = \begin{vmatrix}
7 & 2 & -3 \\
-5 & -1 & -2 \\
-6 & 1 & 3 \\
\end{vmatrix} =[/m]
= 7(-1)*3 + (-3)(-5)*1 + (-6)*2(-2) - (-3)(-1)(-6) - 7(-2)*1 - 3*2(-5) =
= -21 + 15 + 24 + 18 + 14 + 30 = 80
[m]\Delta_{x2} = \begin{vmatrix}
-1 & 7 & -3 \\
3 & -5 & -2 \\
2 & -6 & 3 \\
\end{vmatrix} =[/m]
= (-1)(-5)*3 + (-3)*3(-6) + 2*7(-2) - (-3)(-5)*2 - (-1)(-2)(-6) - 3*7*3 =
= 15 + 54 - 28 - 30 + 12 - 63 = -40
[m]\Delta_{x3} = \begin{vmatrix}
-1 & 2 & 7 \\
3 & -1 & -5 \\
2 & 1 & -6 \\
\end{vmatrix} =[/m]
= (-1)(-1)(-6) + 7*3*1 + 2*2(-5) - 7(-1)*2 - (-1)(-5)*1 - 3*2(-6) =
= -6 + 21 - 20 + 14 - 5 + 36 = 40
Находим переменные:
[m]\large x1 = \frac{\Delta_{x1}}{\Delta} = \frac{80}{-40} = -2[/m]
[m]\large x2 = \frac{\Delta_{x2}}{\Delta} = \frac{-40}{-40} = 1[/m]
[m]\large x3 = \frac{\Delta_{x3}}{\Delta} = \frac{40}{-40} = -1[/m]
Ответ: (-2; 1; -1)