Воспользуемся формулой синуса суммы:
sin (a + b) = sin a*cos b + cos a*sin b
[m]\sqrt{2} (\sin x \cdot \cos \frac{\pi}{4} + \cos x \cdot \sin \frac{\pi}{4}) + 2\sin^2 x = \sin x + 2[/m]
[m]\sqrt{2} (\sin x \cdot \frac{1}{\sqrt{2}} + \cos x \cdot \frac{1}{\sqrt{2}}) + 2\sin^2 x - \sin x - 2 = 0[/m]
[m]\sin x + \cos x + 2\sin^2 x - \sin x - 2 = 0[/m]
[m]\cos x + 2\sin^2 x - 2 = 0[/m]
Получилось совсем простое уравнение:
[m]\cos x - 2(1 - \sin^2 x) = 0[/m]
[m]\cos x - 2\cos^2 x = 0[/m]
[m]\cos x(1 - 2\cos x) = 0[/m]
1) cos x = 0
[b]x1 = π/2 + π*k, k ∈ Z[/b]
2) 1 - 2cos x = 0
cos x = 1/2
[b]x2 = +-π/3 + 2π*n, n ∈ Z[/b]