cos a > 0, sin a < 0
Как известно, sin^2 a + cos^2 a = 1, поэтому:
sin^2 a = 1 - cos^2 a = 1 - 1/25 = 24/25
sin a = -sqrt(24/25) = -sqrt(24)/5 = -sqrt(4*6)/5 = -2sqrt(6)/5
2) a = 31π/3
По формулам приведения:
sin (2πk + a) = sin a, cos (2πk + a) = cos a, k ∈ Z;
sin a = sin (31π/3) = sin (30π/3 + π/3) = sin (10π + π/3) = sin π/3 = sqrt(3)/2
cos (31π/3) = cos (10π + π/3) = cos π/3 = 1/2
3) cos (3π/2 - a) + cos (π/2 - a)
По формулам приведения:
cos (3π/2 - a) = -sin a
cos (π/2 - a) = sin a
cos (3π/2 - a) + cos (π/2 - a) = -sin a + sin a = 0
4) sin (4π + a) = -sqrt(2)/2
По формулам приведения:
sin (2πk + a) = sin a, k ∈ Z;
sin a = -sqrt(2)/2
a = (-1)^(n)*(-π/4) + π*n, n ∈ Z
a = (-1)^(n+1)*π/4 + π*n, n ∈ Z