Замена t = cos x; dt = –sin x dx
\int \frac{1 - \cos^2 x}{\cos^3 x} \cdot \sin x\ dx = \int \frac{1 - t^2}{t^3} (-dt) = \int \frac{t^2 - 1}{t^3} dt = \int (\frac{t^2}{t^3} - \frac{1}{t^3})\ dt =
= \int (\frac{1}{t} - t^{-3})\ dt = \ln |t| - \frac{t^{-2}}{-2} + C = \ln |\cos x| + \frac{1}{2\cos^2 x} + C