Замена y = cos x, тогда dy = -sin x dx
[m]\int \frac{\ln \cos x}{\cos x} \cdot \sin x\ dx = \int \frac{\ln y}{y} (-dy) = -\int \ln y \cdot \frac{dy}{y}[/m]
Замена z = ln y, тогда dz = dy/y
[m]-\int \ln y \cdot \frac{dy}{y} = -\int z\ dz = -\frac{z^2}{2} + C = -\frac{(\ln y)^2}{2} + C = -\frac{(\ln \cos x)^2}{2} + C[/m]
б) [m]\int \frac{x\ dx}{\cos^2 x}[/m]
Берем методом по частям.
u = x, dv = dx/cos^2 x; du = dx; v = tg x
[m]\int \frac{x\ dx}{\cos^2 x} = uv - \int v\ du = x \cdot tg\ x - \int tg\ x\ dx = [/m]
[m]= x \cdot tg\ x - \int \frac{\sin x\ dx}{\cos x} = x \cdot tg\ x + \ln \cos x + C[/m]