Вектора:
AB = (2-1; -3+3; 5-4) = (1; 0; 1)
BC = (3-2; 1+3; 3-5) = (1; 4; -2)
Угол между векторами:
[m]\cos φ = \frac{1 \cdot 1 + 0 \cdot 4 + 1 \cdot (-2)}{\sqrt{1^2+0^2+1^2} \cdot \sqrt{1^2+4^2+(-2)^2}} = \frac{1 + 0 - 2}{\sqrt{2} \cdot \sqrt{21}} = -\frac{1}{\sqrt{42}} = -\frac{\sqrt{42}}{42}[/m]
φ = arccos(-sqrt(42)/42) ≈ 98,8764°