Решаются по одной формуле: [m]\int x^{n} dx = \frac{x^{n+1}}{n+1} + C[/m]
1) [m]\int 8 dx = 8x + C[/m]
2) [m]\int x^7 dx = \frac{x^8}{8} + C[/m]
3) [m]\int (5 - x) dx = 5x - \frac{x^2}{2} + C[/m]
4) [m]\int (6x^3 + 4x - 7) dx = \frac{6x^4}{4} + \frac{4x^2}{2} - 7x + C = \frac{3x^4}{2} + 2x^2 - 7x + C[/m]
5) [m]\int \sqrt[5]{x^4} dx = \int x^{4/5} dx = \frac{x^{4/5+1}}{4/5+1} + C = \frac{x^{9/5}}{9/5} + C = \frac{5}{9} \sqrt[5]{x^9} + C[/m]