Длины сторон:
|AB| = sqrt((1-1)^2 + (2-3)^2 + (-3-5)^2) = sqrt(0^2 + (-1)^2 + (-8)^2) = sqrt(0 + 1 + 64) = sqrt(65)
|AC| = sqrt((3-1)^2 + (4-3)^2 + (1-5)^2) = sqrt(2^2 + 1^2 + (-4)^2) = sqrt(4 + 1 + 16) = sqrt(21)
|BC| = sqrt((3-1)^2 + (4-2)^2 + (1+3)^2) = sqrt(2^2 + 2^2 + 4^2) = sqrt(4 + 4 + 16) = sqrt(24)
p = (|AB| + |AC| + |BC|)/2 = (sqrt(65) + sqrt(21) + sqrt(24))/2
[m]S^2 = p(p-|AB|)(p-|AC|)(p-|BC|) = [/m]
[m]=\frac{\sqrt{65} + \sqrt{21} + \sqrt{24}}{2} \cdot \frac{-\sqrt{65} + \sqrt{21} + \sqrt{24}}{2} \cdot \frac{\sqrt{65} - \sqrt{21} + \sqrt{24}}{2} \cdot \frac{\sqrt{65} + \sqrt{21} - \sqrt{24}}{2} =[/m]
[m]= \frac{(\sqrt{65} + \sqrt{21} + \sqrt{24})(-\sqrt{65} + \sqrt{21} + \sqrt{24})}{4} × \frac{(\sqrt{65} - \sqrt{21} + \sqrt{24})(\sqrt{65} + \sqrt{21} - \sqrt{24})}{4} = [/m]
[m]= \frac{(-65 - \sqrt{1365} - \sqrt{1560}+\sqrt{1365}+21+\sqrt{504}+ \sqrt{1560}+ \sqrt{504}+24)}{4} × [/m]
[m]× \frac{(65 -\sqrt{1365} +\sqrt{1560} + \sqrt{1365}- 21+ \sqrt{504} - \sqrt{1560}+\sqrt{504}-24)}{4} =[/m]
[m]= \frac{(-20+2\sqrt{504})(20 + 2\sqrt{504})}{4 \cdot 4} = \frac{-400 + 4 \cdot 504}{4 \cdot 4} = \frac{-100 + 504}{4} = \frac{404}{4} = 101[/m]
[b]S(ABC) = sqrt(101)[/b]
Но по другой формуле площадь треугольника:
[m]S(ABC) = \frac{|AC| \cdot |BH|}{2} [/m]
[m]\sqrt{101} = \frac{\sqrt{21} \cdot |BH|}{2}[/m]
Высота, опущенная из вершины B:
[m]|BH| = \frac{2 \sqrt{101}}{\sqrt{21}} = \frac{2 \sqrt{101} \cdot \sqrt{21}}{21} = \frac{2 \sqrt{2121}}{21}[/m]
[b]|BH| = 2*sqrt(2121)/21[/b]