Длины сторон:
|AB| = √(1–1)2 + (2–3)2 + (–3–5)2 = √02 + (–1)2 + (–8)2 = √0 + 1 + 64 = √65
|AC| = √(3–1)2 + (4–3)2 + (1–5)2 = √22 + 12 + (–4)2 = √4 + 1 + 16 = √21
|BC| = √(3–1)2 + (4–2)2 + (1+3)2 = √22 + 22 + 42 = √4 + 4 + 16 = √24
p = (|AB| + |AC| + |BC|)/2 = (√65 + √21 + √24)/2
S^2 = p(p-|AB|)(p-|AC|)(p-|BC|) =
=\frac{\sqrt{65} + \sqrt{21} + \sqrt{24}}{2} \cdot \frac{-\sqrt{65} + \sqrt{21} + \sqrt{24}}{2} \cdot \frac{\sqrt{65} - \sqrt{21} + \sqrt{24}}{2} \cdot \frac{\sqrt{65} + \sqrt{21} - \sqrt{24}}{2} =
= \frac{(\sqrt{65} + \sqrt{21} + \sqrt{24})(-\sqrt{65} + \sqrt{21} + \sqrt{24})}{4} × \frac{(\sqrt{65} - \sqrt{21} + \sqrt{24})(\sqrt{65} + \sqrt{21} - \sqrt{24})}{4} =
= \frac{(-65 - \sqrt{1365} - \sqrt{1560}+\sqrt{1365}+21+\sqrt{504}+ \sqrt{1560}+ \sqrt{504}+24)}{4} ×
× \frac{(65 -\sqrt{1365} +\sqrt{1560} + \sqrt{1365}- 21+ \sqrt{504} - \sqrt{1560}+\sqrt{504}-24)}{4} =
= \frac{(-20+2\sqrt{504})(20 + 2\sqrt{504})}{4 \cdot 4} = \frac{-400 + 4 \cdot 504}{4 \cdot 4} = \frac{-100 + 504}{4} = \frac{404}{4} = 101
S(ABC) = √101
Но по другой формуле площадь треугольника:
S(ABC) = \frac{|AC| \cdot |BH|}{2}
\sqrt{101} = \frac{\sqrt{21} \cdot |BH|}{2}
Высота, опущенная из вершины B:
|BH| = \frac{2 \sqrt{101}}{\sqrt{21}} = \frac{2 \sqrt{101} \cdot \sqrt{21}}{21} = \frac{2 \sqrt{2121}}{21}
|BH| = 2·√2121/21