Это решается через определитель:
[m]V = \frac{1}{6} \begin{vmatrix}
X(B)-X(A) & Y(B)-Y(A) & Z(B)-Z(A) \\
X(C)-X(A) & Y(C)-Y(A) & Z(C)-Z(A) \\
X(D)-X(A) & Y(D)-Y(A) & Z(D)-Z(A) \\
\end{vmatrix} = [/m]
[m] = \frac{1}{6} \begin{vmatrix}
2-1 & 0-1 & 2-1 \\
2-1 & 2-1 & 2-1 \\
3-1 & 4-1 & -3-1 \\
\end{vmatrix} = \frac{1}{6} \begin{vmatrix}
1 & -1 & 1 \\
1 & 1 & 1 \\
2 & 3 & -4 \\
\end{vmatrix} =[/m]
= 1/6*|1*1(-4) + 1*1*3 + 2*1(-1) - 1*1*2 - 1*1*3 - 1(-1)(-4)| =
= 1/6*|-4 + 3 - 2 - 2 - 3 - 4| = 1/6*|-12| = 1/6*12 = 2
Ответ: 2