{-tgxtgy=1/3;
{y=π-x,
{-tgx*tg(π-x)=1/3;
{y=π-x,
{-tgx*(-tgx)=1/3;
{y=π-x,
{tg^(2) x=1/3;
{y=π-x,
{tgx= ± (sqrt(3))/3;
1) tgx=-(sqrt(3))/3,
x=arctg(-(sqrt(3))/3)+πk, k ∈ Z,
x_(1)=-(π/6)+πk, k ∈ Z,
y_(1)=π+(π/6)-πk=(7π)/6-πk, k ∈ Z;
2) tgx=(sqrt(3))/3,
x=arctg((sqrt(3))/3)+πn, n ∈ Z,
x_(2)=(π/6)+πn, n ∈ Z,
y_(2)=π-(π/6)-πn=(5π)/6-πn, n ∈ Z.
Ответ: (-(π/6)+πk;(7π)/6-πk), k ∈ Z;
((π/6)+πn; (5π)/6-πn), n ∈ Z.