Loading [MathJax]/extensions/tex2jax.js
Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 77936 ...

Условие


Найдите производную функции
y(x)=36⋅sin (−9x)+8cos (−9x)+5
В ответ введите значение y'(0).

математика ВУЗ 257

Решение

Ответ: –54

Обсуждения

Все решения

[m]y(x) = 36 \cdot \frac{\sin (-9x) + 8}{\cos (-9x) + 5} = 36 \cdot \frac{-\sin 9x + 8}{\cos 9x + 5}[/m]
[m]y'(x) = 36 \cdot \frac{(-\sin 9x + 8)'(\cos 9x + 5) - (-\sin 9x + 8)(\cos 9x + 5)'}{(\cos 9x + 5)^2} =[/m]
[m]= 36 \cdot \frac{-9\cos 9x(\cos 9x + 5) - (-\sin 9x + 8)(-9\sin 9x)}{(\cos 9x + 5)^2} = [/m]
[m]=36 \cdot \frac{-9\cos^2 9x - 45\cos 9x - 9\sin^2 9x + 72\sin 9x}{(\cos 9x + 5)^2} =[/m]
[m] =36 \cdot \frac{-9(\cos^2 9x + \sin^2 9x) - 45\cos 9x + 72\sin 9x}{(\cos 9x + 5)^2} = [/m]
[m]=36 \cdot \frac{-9 - 45\cos 9x + 72\sin 9x}{(\cos 9x + 5)^2}[/m]
[m]y'(0) = 36 \cdot \frac{-9 - 45\cos 0 + 72\sin 0}{(\cos 0 + 5)^2} = 36 \cdot \frac{-9 - 45+ 0}{(1 + 5)^2} = 36 \cdot \frac{-54}{36} = -54[/m]

Обсуждения

Написать комментарий

Меню

Присоединяйся в ВК