Область определения:
{ x > 0
{ log5 x ≠ 0
Получаем:
{ x > 0
{ x ≠ 1
x ∈ (0; 1) U (1; +oo)
\frac{\log_5 5 - \log_5 x^2}{(\log_5 x)^2} = 3
\frac{1 - 2\log_5 x}{(\log_5 x)^2} = 3
Замена t = log5 x
\frac{1 - 2t}{t^2} = 3
0 = 3 - \frac{1 - 2t}{t^2}
\frac{3t^2 + 2t - 1}{t^2} = 0
3t2 + 2t – 1 = 0
(t + 1)(3t – 1) = 0
t_1 = \log_5 x = -1
x_1 = 5^{-1} = \frac{1}{5}
t_2 = log_5 x = \frac{1}{3}
x_2 = 5^{1/3} = \sqrt[3]{5}