Замена sqrt(2x + 1) = t; x = (t^2 - 1)/2; dx = 1/2*2t dt = t dt
Пределы интегрирования: t(1) = sqrt(2*1 + 1) = sqrt(3); t(4) = sqrt(2*4 + 1) = sqrt(9) = 3
[m]\int \limits_{\sqrt{3}}^3 \frac{t}{(t^2-1)/2} \cdot t\ dt = \int \limits_{\sqrt{3}}^3 \frac{2t^2}{t^2-1} dt = 2\int \limits_{\sqrt{3}}^3 (1+\frac{1}{t^2-1}) dt = 2(t + \frac{1}{2} \ln |\frac{t-1}{t+1})|\ |_{\sqrt{3}}^3 = [/m]
[m]=2(3 - \sqrt{3}) + \ln |\frac{3-1}{3+1}| - \ln |\frac{\sqrt{3}-1}{\sqrt{3}+1}| = 6 - 2\sqrt{3} + \ln \frac{2}{4} - \ln |\frac{(\sqrt{3}-1)^2}{3-1}| =[/m]
[m]= 6 - 2\sqrt{3} - \ln 2 - \ln (2-\sqrt{3})[/m]