log_4(4√6-10)^2 + log_8(4√6+10)^3 = 2.
[m]4\sqrt{6}<10[/m], так как [m](4\sqrt{6})^2<10^2[/m]
[m]log_{8}(4\sqrt{6}+10)^3=log_{2^3}(4\sqrt{6}+10)^3=\frac{3}{3}\cdot log_{2}(4\sqrt{6}+10)[/m]
[m]log_{4}(4\sqrt{6}-10)^2+log_{8}(4\sqrt{6}+10)^3=log_{2}(10-4\sqrt{6})+ log_{2}(4\sqrt{6}+10)= log_{2}(10-4\sqrt{6})\cdot log_{2}(4\sqrt{6}+10) =[/m]
[m]=log_{2}(10^2-(4\sqrt{6})^2)=log_{2}(100-96)=log_{2}4=2[/m]