По определению:
[m]F(x)= ∫ ^{x}_{- ∞ }f(x)dx[/m]
[b]При x ≤6/5[/b]
[m]F(x)= ∫ ^{x}_{- ∞ }0dx=0[/m]
[b]При 6/5<x≤7/5[/b]
[m]F(x)= ∫ ^{x}_{- ∞ }f(x)dx=∫ ^{\frac{6}{5}}_{- ∞ }0 dx+∫ ^{x}_{\frac{6}{5}}(50x-60)dx=0+(\frac{50x^2}{2}-60x)|^{x}_{\frac{6}{5}}=25x^2-60x+36[/m]
[b]При x > 7/5[/b]
[m]F(x)= ∫ ^{x}_{- ∞ }f(x)dx=∫ ^{6/5}_{- ∞ }0dx+∫ ^{7/5}_{6/5}\frac{1}{7,5}dx+∫ ^{x}_{7/5}0dx=0+(\frac{50x^2}{2}-60x)|^{\frac{7}{5}}_{\frac{6}{5}}+0=1[/m]
Получаем:
[m]F(x)\left\{\begin {matrix}0, x ≤\frac{6}{5}\\25x^2-60x+36,\frac{6}{5}<x≤\frac{7}{5}\\1, x>\frac{7}{5} \end {matrix}\right.[/m]
[m]P(\frac{5}{4} < X <\frac{27}{20})=F(\frac{27}{20})-F(\frac{5}{4})=25(\frac{27}{20})^2-60\cdot \frac{27}{20}+36 -(25(\frac{5}{4})^2-60\cdot \frac{5}{4}+36)=...[/m] считайте