ЗАДАЧА 71 В подводной лодке для погружения и

УСЛОВИЕ:

В подводной лодке для погружения и всплытия имеются 2 сообщающихся между собой резервуара. В погруженном состоянии один резервуар ёмкостью V1 заполнен водой, во второй, ёмкостью V2 , находится сжатый воздух. Каково должно быть минимальное давление сжатого воздуха, чтобы для вспытия лодки с глубины Н , он полностью вытеснил воду из балластной цистерны? Атмосферное давление нормальное.

РЕШЕНИЕ:

Давление должно быть ….. чтобы давление воздуха, который занимает
собой 2-резервуара, равнялось гидростатическому давлению на глубине H
P0+gH?=P2 T-const
Закон Бойля –Мариотта: P2V’2=P’1V’1
(P0+gh?)*(V1+V2)=P1V2
P1=(V1+V2) / V2 (P0+gh?)
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

P1=(V1+V2) / V2 (P0+gh?)

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 776 ⌚ 31.12.2013. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ x=1/sint dx=-costdt/sin^2t = ∫ (sin^3t*sint/cost)*(-costdt/sin^2t)= = -∫ sin^2tdt=- ∫ (1-cos2t)/2=(-1/2)*t+(1/2)sin2t+C sint=1/x ⇒ t=arcsin(1/x) cost=sqrt(1-(1/x)^2) cost=sqrt(x^2-1)/x (-1/2)*t+(1/2)sin2t+C=(-1/2)*t+(1/2)*2sintcost+C =(-1/2)*arcsin(1/x)+(1/x)*sqrt((x^2-1)/x) + C= =(-1/2)*arcsin(1/x)+sqrt((x^2-1)/x^2) + C= к задаче 26650

SOVA ✎ Из второго уравнения x+y+7=7 x+y=0 y=-x Первое уравнение квадратное относительно x^2+y^2-4x+4=t at^2+(6a^2-3a-2)*t-12a+6=0 D=(6a^2-3a-2)^2-4*a*(-12a+6)= =36a^4+9a^2+4-36a^3-24a^2+12a+48a^2-24a= =36a^4+9a^2+4-36a^3-24a^2+12a+48a^2-24a= =36a^4-36a^3+33a^2-12a+4 больше или равно 0 Обозначим g(a)=36a^4-36a^3+33a^2-12a+4 g(a) > 0 при любом а График расположен выше оси Ох ( см. рис) Значит при любом а квадратное уравнение at^2+(6a^2-3a-2)*t-12a+6=0 имеет два корня t_(1)(a) и t_(2)(a) обратная замена приводит к двум уравнениям x^2-4x+y^2+4=t_(1) (а) или x^2-4x+y^2+4=t_(2)(a) Каждое уравнение представляет собой окружность. Надо чтобы первая окружность пересекала прямую у=-х в двух точках, а вторая окружность хотя бы в одной и наоборот. Пока других соображений нет к задаче 26649

SOVA ✎ ОДЗ: {2x-1 > 0; 2x-1 ≠ 1 ⇒ x ∈ (0,5; 1) U(1;+ бесконечность ) {9x^2-12x+4 > 0 ⇒ (3x-2)^2 > 0 ⇒ x ≠ 2/3 {3x-2 > 0 ⇒ x > 2/3 (6x^2-7x+2 > 0 ⇒ D=49-48=1 x ∈ (- бесконечность;1/2)U(2/3;+ бесконечность ) {3log_(2x-1)(6x^2-7x+2)-2 ≠ 0 ⇒ (6x^2-7x+2)^3 ≠ (2x-1)^2 ⇒ (2x-1)^3*(3x-2)^3 ≠ (2x-1)^2 ⇒ (2x-1)^2*(2x-1)*(3x-2)^3-1) ≠ 0 ⇒ 2x-1 ≠ 0 или (2x-1)*(3x-2)^3 ≠ 1 ⇒ x ≠ 1 или x ≠ a, 0 < a < 1 и не войдет в ОДЗ ОДЗ: (3/2; + бесконечность ) В условиях ОДЗ log_(2x-1)(9x^2-12x+4)=log-(2x-1)(3x-2)^2=2log_(2x-1)(3x-2); log^2_(2x-1)(9x^2-12x+4)=(2log_(2x-1)(3x-2))^2=4log^2_(2x-1)(3x-2); log_(2x-1)(6x^2-7x+2)=log_(2x-1)(2x-1)(3x-2)= =log_(2x-1)(2x-1)+log_(2x-1)(3x-2)=1+log_(2x-1)(3x-2) Замена переменной log_(2x-1)(3x-2)=t Неравенство принимает вид (4t^2-10t+18)/((3+3t)-2) меньше или равно 2; (4t^2-16t+16)/(3t+1) меньше или равно 0 так как 4t^2-16t+16 > 0 при любом t ⇒ 3t+1 < 0 t < -1/3 log_(2x-1)(3x-2) < -1/3 (2x-1-1)*(3x-2-(2x-1)^(-1/3)) < 0 (2x-2)*(3x-2-(1/∛(2x-1))) < 0 При x ∈ ОДЗ 2x-2 > 0 значит (3x-2 - (1/∛2x-1)) < 0 ⇒ (3x-2)^3*(2x-1) < 1 см последнее неравенство при нахождении ОДЗ Решением служит (a;1) , который не входит в ОДЗ Cм. рис. Графики у=(2х-1)(3х-2)^3 и y=1 О т в е т. Нет решений к задаче 26647

SOVA ✎ у`=(х^2–31х+31)`*е^(15–х)+(x^2-31x+31)*(e^(15-x))` у`=(2x–31)*е^(15–х)+(x^2-31x+31)*(e^(15-x))*(15-x)` у`=(2x–31)*е^(15–х)+(x^2-31x+31)*(e^(15-x))*(-1) y`=e^(15-x)*(2x-31-x^2+31x-31) y`=e^(15-x)*(-x^2+33x-62) y`=0 e^(15-x) > 0 при любом х -x^2+33x-62=0 x^2-33x+62=0 D=(-33)^2-4*62=1089-248=841=41^2 x_(1)=(33-41)/2=-4 или x_(2)=(33+41)/2=37 _-__ (-4) __+___ (37) __-__ x=-4 - точка минимума, производная меняет знак с - на + к задаче 26645

SOVA ✎ x^2-10x+25-x^2=3 -10x=-22 x=22/10 x=2,2 к задаче 26642