ЗАДАЧА 6960 На рисунках приведены графики двух

УСЛОВИЕ:

На рисунках приведены графики двух изопроцессов, происходящих с идеальным газом неизменной массы. Установите соответствие между графиками и изопроцессами, которые эти графики могут представлять. К каждой позиции первого столбца подберите соответствующую позицию второго и запишите в таблицу выбранные цифры под соответствующими буквами.

РЕШЕНИЕ:

Первый график представляет собой прямо пропорциональную зависимость давления от температуры, при этом объем газа должен оставаться неизменным — изохорный процесс. Второй график соответствует процессу с неизменной температурой — изотермический процесс.
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

21

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Физике? А почему не с нами?
Начать подготовку

Добавил YaroslavMatulyak , просмотры: ☺ 1157 ⌚ 16.02.2016. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ |sin(x/3)| меньше или равно 1 ОДЗ: 25-x^2 больше или равно 0 -5 меньше или равно x меньше или равно 5 см. графическое решение у=sin(x/3) и y=√(25–x^2)+x^2–25 (y= sqrt(t)-t, t=25-x^2) пересекаются в ОДНОЙ ТОЧКЕ (!) к задаче 22738

SOVA ✎ (x-2)/x^3-x*(2-x)=0 (x-2)/x^3+x*(x-2)=0 (x-2)*((1/x^3)+x)=0 (x-2)(1+x^4)/x^3=0 x-2=0 x=2 О т в е т. 2 к задаче 22733

SOVA ✎ а1=1, а_(n+1)=2*a_(n)+1 a_(2)=2a_(1)+1=2*1+1=3 a_(3)=2a_(2)+1=2*3+1=7 a_(4)=2a_(3)+1=2*7+1=15 a_(5)=2a_(4)+1=2*15+1=31 к задаче 22734

u852616443 ✎ Давление p=F/S , F=mg , т.к. тело покоится. S=a^2 т.к квадрат, отсюда следует p=mg/a^2, P= 14*10/0,49= 286 округленно. к задаче 22723

SOVA ✎ Раскрываем модуль по определению. 1) Если 2x^2+3x–2 больше или равно 0 (х меньше или равно -2 или х больше или равно (1/2) то |2x^2+3x–2|=2x^2+3x-2 и уравнение имеет вид 2x^2+3x-2=8х-2x^2-a; 4x^2-5x+(a-2)=0 - квадратное уравнение с параметром. Имеет два корня, один или ни одного. Это зависит от дискриминанта. D=25-16*(a-2)=57-16a Если D < 0 - нет корней 57-16a < 0 a > 57/16 Если D=0 ,т.е. a=57/16 x1=x2=5/8 удовл. условию x > 1/2 Если D > 0, т.е. a < 57/16 два корня x1=(5-sqrt(57-16a))/8 или x2=(5+sqrt(57-16a))/8 При этом надо проверить, при каких а корни удовлетворяют условию 2x^2+3x–2 больше или равно 0 2) Если 2x^2+3x–2 < 0 ( -2 < х < (1/2)) то |2x^2+3x–2|= - 2x^2- 3x + 2 и уравнение имеет вид - 2x^2 - 3x + 2=8х-2x^2-a; 11x=a+2- линейное уравнение, имеет ед корень х=(а+2)/11 Найдем при каких а этот корень является решением уравнения, т.е при каких а -2 < (a+2)/11 < (1/2) - верно. -22 < a+2 < 11/2 -24 < a < 3,5 При а ∈ (-24; 3,5) х=(а+2)/11 - корень к задаче 22730