ЗАДАЧА 6471 Найдите ошибки в приведенном тексте.

УСЛОВИЕ:

Найдите ошибки в приведенном тексте. Укажите номера предложений, в которых сделаны ошибки, исправьте их.

1. К органическим веществам клетки относят белки, липиды, углеводы, нуклеиновые кислоты. 2. Белки — полимеры, моно¬мерами которых являются нуклеотиды. 3. Изменение структуры и потеря белком его природных свойств — редупликация. 4. Глюкозу, сахарозу, рибозу относят к моносахаридам. 5. Фосфолипиды образуют в мембране билипидный слой.

РЕШЕНИЕ:

1) 2 — белки — полимеры, мономерами которых являются аминокислоты;
2) 3 — изменение структуры и потеря белком его природных свойств — денатурация;
3) 4 — глюкоза, рибоза — моносахариды, сахароза — дисахарид
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

В решение

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Биологии? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 6607 ⌚ 06.02.2016. биология 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ |sin(x/3)| меньше или равно 1 ОДЗ: 25-x^2 больше или равно 0 -5 меньше или равно x меньше или равно 5 см. графическое решение у=sin(x/3) и y=√(25–x^2)+x^2–25 (y= sqrt(t)-t, t=25-x^2) пересекаются в ОДНОЙ ТОЧКЕ (!) к задаче 22738

SOVA ✎ (x-2)/x^3-x*(2-x)=0 (x-2)/x^3+x*(x-2)=0 (x-2)*((1/x^3)+x)=0 (x-2)(1+x^4)/x^3=0 x-2=0 x=2 О т в е т. 2 к задаче 22733

SOVA ✎ а1=1, а_(n+1)=2*a_(n)+1 a_(2)=2a_(1)+1=2*1+1=3 a_(3)=2a_(2)+1=2*3+1=7 a_(4)=2a_(3)+1=2*7+1=15 a_(5)=2a_(4)+1=2*15+1=31 к задаче 22734

u852616443 ✎ Давление p=F/S , F=mg , т.к. тело покоится. S=a^2 т.к квадрат, отсюда следует p=mg/a^2, P= 14*10/0,49= 286 округленно. к задаче 22723

SOVA ✎ Раскрываем модуль по определению. 1) Если 2x^2+3x–2 больше или равно 0 (х меньше или равно -2 или х больше или равно (1/2) то |2x^2+3x–2|=2x^2+3x-2 и уравнение имеет вид 2x^2+3x-2=8х-2x^2-a; 4x^2-5x+(a-2)=0 - квадратное уравнение с параметром. Имеет два корня, один или ни одного. Это зависит от дискриминанта. D=25-16*(a-2)=57-16a Если D < 0 - нет корней 57-16a < 0 a > 57/16 Если D=0 ,т.е. a=57/16 x1=x2=5/8 удовл. условию x > 1/2 Если D > 0, т.е. a < 57/16 два корня x1=(5-sqrt(57-16a))/8 или x2=(5+sqrt(57-16a))/8 При этом надо проверить, при каких а корни удовлетворяют условию 2x^2+3x–2 больше или равно 0 2) Если 2x^2+3x–2 < 0 ( -2 < х < (1/2)) то |2x^2+3x–2|= - 2x^2- 3x + 2 и уравнение имеет вид - 2x^2 - 3x + 2=8х-2x^2-a; 11x=a+2- линейное уравнение, имеет ед корень х=(а+2)/11 Найдем при каких а этот корень является решением уравнения, т.е при каких а -2 < (a+2)/11 < (1/2) - верно. -22 < a+2 < 11/2 -24 < a < 3,5 При а ∈ (-24; 3,5) х=(а+2)/11 - корень к задаче 22730