✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 63 Два сосуда соединены трубкой, имеющей

УСЛОВИЕ:

Два сосуда соединены трубкой, имеющей кран. В первом сосуде находится m1=2кг некоторого газа под давлением р1= 400 кПа, во втором – m2=3 кг того же газа. Когда кран открыт, в сосуде установилось давление р= 600 кПа. Каким было первоначальное давление р2 газа во втором сосуде? Т= const.

РЕШЕНИЕ:

P3=P1+P2 –закон Дальтона T-const.

P1,P2—парциальные давления.

P1 / P’1=(V1+V2) / V1 ; P2 / P’2=(V2+V1) / V2
P’1=V1*P1 / (V1+V2) P’2=P2V2 (V2+V1)
P3= (V1P1+V2P2) / (V1+V2) ; V= m / ? ; P3=(m1P1+m2P2) / (m1+m2)

Отсюда P2=(P3(m1+m2)-m1P1) / m2=735*1000=735000 Па

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

P2=735000 Па

Добавил slava191, просмотры: ☺ 5866 ⌚ 31.12.2013. физика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последние решения
Линейное неоднородное дифференциальное уравнение второго постоянными коэффициентами.

Решаем однородное дифференциальное уравнение второго постоянными коэффициентами.
y'' –4y'+8y=0

Составляем характеристическое уравнение:
k^2 –4k+8=0
D=16-32=-16
sqrt(D)=4i

k_(1)=2-2i;k_(2)=2+2i;

α =2
β=2

y_(общ одн) находят по формуле:
y_(общ одн)=e^( α x)*(C_(1)cosβx+С_(2)sinβx)


y_(част неодн)=e^(x)(Asinx+Bcosx)
[удалить]
✎ к задаче 38401
Замена
y``=z
тогда
y```=z`

xz`-z=sqrt(x) - линейное уравнение вида
z`-p(x)z=q(x)

Решается методом Бернулли (z=u*v) или методом вариаций.

z=y``

y`= ∫ zdx

y``= ∫ y`dx
[удалить]
✎ к задаче 38399
Применяем радикальный признак Коши:

lim_(n→∞ ) (a_(n))^(1/n)= lim_(n→∞ )(n+1)/(2n+1) =1/2 < 1

Ряд сходится

[удалить]
✎ к задаче 38413
Ионная
Во всех соединениях неметаллов с металлами
[удалить]
✎ к задаче 38415
2x^2+y^2=4 ⇒ выразим y^2=4-2x^2

Тогда
4x+y^2=4x+4-2x^2 - квадратный трехчлен, который принимает наибольшее значение при x=1
( в вершине параболы, абсцисса вершины х_(o)=-b/2a)

4*1+4-2*1^2= [b]6[/b] - максимальное значение, которое может принимать выражение 4x + y^2.


2x^2+y^2=4 ⇒ выразим x^2=(4-y^2)/2

x= ± sqrt((4-y^2)/2)

Наименьшее значение выражение
4x+y^2 принимает при x=-sqrt((4-y^2)/2)

х < 0 при любом |y|≤ 2

Чтобы сумма отрицательного числа и неотрицательного (y^2)
принимала наименьшее значение надо, чтобы y^2=0 ⇒

x=-sqrt((4-0)/2)=-sqrt(2)

4x+y^2=4*(-sqrt(2))+0= [b]-4sqrt(2) [/b] - минимальное значение, которое может принимать выражение 4x + y^2.
[удалить]
✎ к задаче 38412