x >0
[m]log_{\frac{1}{8}}x=\frac{log_{2}x}{log_{2}\frac{1}{8}}=\frac{log_{2}x}{-3}[/m]
[m]log^2_{\frac{1}{8}}x=(\frac{log_{2}x}{-3})^2=\frac{log^2_{2}x}{9}[/m]
[m]log_{\frac{1}{4}}x=\frac{log_{2}x}{log_{2}\frac{1}{4}}=\frac{log_{2}x}{-2}[/m]
Уравнение принимает вид:
[m]36\cdot \frac{log^2_{2}x}{9}+4\cdot (\frac{log_{2}x}{-2})-5=0[/m]
[m]4log^2_{2}x-2log_{2}x-5=0 [/m]
D=(–2)2–4·4·(–5)=4+80=84
[m]log_{2}x=\frac{2-2\sqrt{21}}{8}[/m] или [m]log_{2}x=\frac{2+2\sqrt{21}}{8}[/m]
[m]x=2^{\frac{2-2\sqrt{21}}{8}}[/m] или [m]x=2^{\frac{2+2\sqrt{21}}{8}}[/m]