✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 62 В сосуд цилиндрической формы налиты

УСЛОВИЕ:

В сосуд цилиндрической формы налиты равные массы воды и машинного масла. Общая высота обоих слоёв жидкостей h= 40 см. Определите давление жидкостей на дно сосуда. ?в= 1000 кгм куб ; ?м=900 кгм куб.

РЕШЕНИЕ:

P=P1+P2

P1=gh2?1-давлениеводы

P2=gh2?2-давление масла

P=g (h1?1-?2h2 h1+h2’40

V=Sh ;m=V? ; m1=m2 ; Sh1?1’Sh2?2; h1/h2=?2/?1 ; h1’ h2 ?2/?1

…h2= h?1/(?2-?1) P=g(h?1?2) / ?1+?2.+?????


? 2*100*900*10*0.4 / 1900

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

P=3.8*1000 па

Добавил slava191, просмотры: ☺ 2101 ⌚ 31.12.2013. физика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Вводим в рассмотрение гипотезы:
H_(1) - " из 1 в 2 переложили белый шар"
p(H_(1))=8/12
H_(2) - " из 1 в 2 переложили красный шар"
p(H_(2))=4/12
p(H_(1))+p(H_(2))=1
Гипотезы выбраны верно.

A- " из второй урны достали красный шар"
p(A/H_(1))=2/9 ( во второй 6 белых, 2 красных и переложили белый)
p(A/H_(2))=3/9

p(A)=p(H_(1))*p(A/H_(1))+p(H_(2))*p(A/H_(2))=

=(8/12)*(2/9)+(4/12)*(3/9)= считаем самостоятельно
✎ к задаче 43616
По свойству плотности вероятности
∫ ^(+ ∞ )_(- ∞ )f(x)dx=1

Считаем интеграл от данной функции.

Так как функция задана тремя выражениями рассматриваем интеграл как сумму интегралов:


∫^(+ ∞)_(- ∞ )f(x)dx=

=∫^(0)_(- ∞ )[b]0[/b](x)dx+∫^(1)_(0)[b]a(x+10)[/b]dx+∫^(+ ∞ )_(1)[b]0[/b]dx=

=0+a*((x^2/2)+10x)|^(1)_(0)+0=

=a*((1/2)+10)=10,5a

10,5a=1 ⇒[b] a=2/21[/b]
✎ к задаче 43617
\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x-1}=\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}\cdot(\frac{x+1}{x+3})^{-1} =

=\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}\cdot\lim_{x \to\infty }(\frac{x+1}{x+3})^{-1}=


\lim_{x \to\infty }(\frac{x+1}{x+3})^{-1}= 1^{-1}=1


\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}=\lim_{x \to\infty }(\frac{\frac{x+1}{x}}{\frac{x+3}{x}})^{4x}=

=\lim_{x \to\infty }\frac{(1+\frac{1}{x})^{x})^{4}}{(1+\frac{3}{x})^{x})^{4}}=\frac{e^{4}}{(e^{3})^{4}}=e^{4-12}=e^{-8}



✎ к задаче 43623
(прикреплено изображение)
✎ к задаче 43609
(прикреплено изображение)
✎ к задаче 43611