ЗАДАЧА 614 Найдите площадь треугольника, если две

УСЛОВИЕ:

Найдите площадь треугольника, если две стороны его равны 27 и 29, а медиана, проведённая к третьей, равна 26.

РЕШЕНИЕ:

Пусть стороны АВ и ВС треугольника ABC равны соответственно 27 и 29, а его медиана ВМ равна 26. На продолжении медианы ВМ за точку М отложим отрезок MD, равный ВМ. Из равенства треугольников АВМ и CDM следует равенство площадей треугольников ABC и BCD. В треугольнике BCD известно, что
ВС = 29, BD = 2ВМ = 52, DC = АВ = 27.
По формуле Герона
S BCD = 270 = S ABC


ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

270.

Нужна помощь?

Опубликовать

Готовься с нами!

Готовишься к ЕГЭ по Математике? А почему не с нами?
Начать подготовку

Добавил slava191 , просмотры: ☺ 6432 ⌚ 13.02.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

SOVA ✎ 11/30 и 17/36 приводим к общему знаменателю 360 11/30=(11*12)/(30*12)=132/360 17/36=(17*10)/(36*10)=170/360 1) (11/30)-(17/36)=(132/360)-(170/360) = - 38/360= =-19/180 2) (-19/180):(19/45)=(-19/180)*(45/19)= - (45/180) = = -1/4 к задаче 28599

SOVA ✎ Решаем однородное уравнение второго порядка с постоянными коэффициентами 5y'' + 9y'–2y=0 Составляем характеристическое уравнение: 5k^2+9k-2=0 D=9^2-4*5*(-2)=81+40=121=11^2 k_(1)=(-9-11)/10=-2 или k_(2)=(-9+11)/10=0,2 Общее решение однородного уравнения имеет вид: y_(одн.)=С_(1)e^(-2x) + C_(2)e^(0,2x) Частное решение данного неоднородного уравнения находим в виде у_(част)=Acos2x+Bsin2x Находим y`_(част)=-2Аsn2x+2Bcos2x y``_(част)=-4Аcos2x-4Bsin2x Подставляем y_(част), y`_(част), y``_(част) в данное уравнение: 5*(- 4Аcos2x - 4Bsin2x) + 9*(-2Аsn2x+2Bcos2x) -2*(Acos2x+Bsin2x) = 2 sin2x-3cos2x Раскрываем скобки и группируем слагаемые с sin2x и cos2x (-22B -18A)sin2x+(-22A+18B)cos2B=2sin2x-3cos2x {-22B -18A=2 {-22A+18B=-3 {-9A - 11B = 1 {-22A +9B=-3 Первое уравнение умножим на 9, второе на 11 {-81A -99B=9 {-242A +99B=-33 Cкладываем 323А=24 А=24/323 B=(-9A-1)/11=-49/323 О т в е т. y=y_(одн)+у_(част)=С_(1)e^(-2x) + C_(2)e^(0,2x)+(1/323)*(24sin2x-49cos2x) к задаче 28604

SOVA ✎ Так как сos2x=2cos^2x-1, то 2cos^2x-1+2cos^2x=0 ⇒ 4cos^2x=1 ⇒ cos^2x=1/4 ⇒ cosx= ± 1/2 cosx=1/2 ⇒ x= (± Pi/3)+2Pik, k ∈ Z или cosx= - 1/2 ⇒ x = ( ± 2Pi/3)+2Pin, n ∈ Z О т в е т. (± Pi/3)+2Pik, ( ± 2Pi/3)+2Pin, k , n ∈ Z к задаче 28605

SOVA ✎ к задаче 28560

SOVA ✎ 2. Интеграл вычисляют методом интегрирования по частям u=x^2 v=sin2xdx du=2xdx v=-(1/2)cos2x ∫ x^2sin2xdx=-(x^2/2)cos2x+∫ xcos2xdx= u=x dv=cos2xdx du=dx v=(1/2)sin2x =-(x^2/2)cos2x+(x/2)sin2x- ∫ (1/2)sin2xdx= =-(x^2/2)cos2x+(x/2)sin2x+(1/4)cos2x + C 3. Линейное дифференциальное уравнение первого порядка. Решаем однородное уравнение y`-(y/x)=0 dy/dx=y/x- уравнение с разделяющимися переменными dy/y=dx/x ∫ dy/y= ∫ dx/x ln||=ln|x|+lnC y=Cx Применяем метод вариации произвольной постоянной у=С(х)*х y`=C`(x)*x+C(x)*x` y`=C`(x)*x+C(x) Подставляем в данное уравнение C`(x)*x+C(x)-С(х)*х/х=(х+1)/х C`(x)*x=(х+1)/х C`(x)=(х+1)/х^2 C(x)= ∫ (x+1)dx/x^2= ∫ dx/x+ ∫ dx/x^2=ln|x|-(1/x)+C y=(ln|x|-(1/x)+C)*x y=xlnx-1+Cx - общее решение данного уравнения к задаче 28596