✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 601 Диагональ куба равна 6 см. Найдите: а)

УСЛОВИЕ:

Диагональ куба равна 6 см. Найдите: а) ребро куба; б) косинус угла между диагональю куба и плоскостью одной из его граней

РЕШЕНИЕ ОТ slava191 ✪ ЛУЧШЕЕ РЕШЕНИЕ

a)
Пусть ребро куба равно = a
(a^2 + a^2) диагональ основания (синенькая) из т. Пифагора
a^2 + (a^2+a^2) = 6^2
3a^2=36
a^2=12
a=sqrt(12)=2sqrt(3)
б) найдем косинус угла между плоскостью основания и диагональю куба.
Так как синенькая прямая лежит в плоскости основания, то нам надо найти cos угла между синенькой и красненькой прямой.

d - синенькая прямая
d = sqrt(a^2+a^2) = sqrt(2a^2)=sqrt(8*3)= sqrt(24) = 2sqrt(6)

m - красненькая прямая

m = 6 (из условия)

cos(альфа) = d/m = 2sqrt(6)/6 = sqrt(6)/3

Ответ:
а) 2sqrt(3)
б) sqrt(6)/3

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (3)

Добавил Гость, просмотры: ☺ 84842 ⌚ 07.02.2014. математика 10-11 класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
cos4x=sin(\frac{\pi}{2}-4x)

Уравнение принимает вид:

sin5x + sin(\frac{\pi}{2}-4x)=0

Формула

sin α +sin β

2sin\frac{5x+\frac{\pi }{2}-4x}{2}sinx\frac{5x-\frac{\pi}{2}+4x }{2}=0


sin(x+\frac{\pi }{4})sin(4,5x-\frac{\pi}{4})=0

sin(x+\frac{\pi }{4})=0

x+\frac{\pi }{4}=\pi k, k\in Z

x= -\frac{\pi }{4}+\pi k, k\in Z

или

sin(4,5x-\frac{\pi}{4})=0

4,5x-\frac{\pi }{4}=\pi n, n\in Z

4,5x= \frac{\pi }{4}+\pi n, n\in Z

x= \frac{\pi }{18}+ \frac{2\pi }{9} n, n\in Z

✎ к задаче 41517
Это прямоугольный параллелепипед: (прикреплено изображение)
✎ к задаче 41512
1.5.1
vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos( ∠ vector{a},vector{b})

В условии задачи[red] опечатка[/red], не соs φ_(1) дан, а ∠ φ _(1)=45 °

[b]∠ φ _(1)=45 °⇒ cos 45 ° = sqrt(2)/2[/b]

vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos( 45 ° )=2*sqrt(2)*(sqrt(2)/2)=2

[b]∠ φ _(2)=90 ° ⇒ cos 90 ° =0[/b]

vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos( 90 ° )=2*sqrt(2)*0=0

[b]∠ φ _(3)=135 ° ⇒ cos 135 ° = - sqrt(2)/2 [/b]

vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos(135 ° )=2*sqrt(2)*(-sqrt(2)/2)= - 2

[b]∠ φ _(2)=180 ° ⇒ cos 180 ° =-1[/b]

vector{a}*vector{b}=|vector{a}|*|vector{b}|* cos( 180 ° )=2*sqrt(2)*(-1)= - 2sqrt(2)

1.5.2.
условие неполное.
Ничего не сказано про векторы

1.5.3.

(прикреплено изображение)
✎ к задаче 41493
Закон изменения импульса в проекции на ось х:
P_(2x)-P_(1x)=F_(x)*τ
mV_(1)cosα-mV_(2)cosβ=-F_(тр)*т ⇒
F_(тр)=(-mV_(1)cosα+mV_(2)cosβ)/т
✎ к задаче 41492
Разложение ln(1+x) известно. (прикреплено изображение)
✎ к задаче 41506