ЗАДАЧА 60 В цилиндрический сосуд радиусом r =10

УСЛОВИЕ:

В цилиндрический сосуд радиусом r =10 см налита вода. При этом сила давления воды на дно сосуда равна силе давления на его боковую поверхность. Каков уровень воды в сосуде?

РЕШЕНИЕ:

Fд=pS. Где p=gh? ; S=ПR*R

Fб=(p)Sбок ; (p)=p/2—среднее давлениеводы на боковую поверхность:

Sбок=2ПRh

Fбок=gПRh*h?

По условию Fд=Fбок ; ghПR*R?’?h*hgПR след-но h=R=0,1м
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

h=0.1м

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 1523 ⌚ 31.12.2013. физика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

vk397114329 ✎ Решение: cosx=cos2x*cos3x cos2x*cos3x=1/2(cosx+cos5x); cosx-1/2(cosx)-1/2(cos5x)=0; 1/2(cosx)-1/2(cos5x)=0; cosx-cos5x=sin3x*sin2x=0 sin3x=0. отсюда 3x=Pik. x=Pik/3,k ∈ z 2) sin2x=0. x=Pik/2 Ответ:Piк/3, Piк/2 к задаче 22563

SOVA ✎ Формула cos альфа *cos бета =(1/2)*(cos( альфа + бета )+cos( альфа - бета )) cosx=(1/2)cos5x+(1/2)cosx (1/2)*(cos5x-cosx)=0 Формула cos альфа -cos бета=-2* sin(( альфа + бета )/2)*sin(( альфа - бета )/2) sin3x*sin2x=0 3x=Pik, k ∈ Z или 2х=Pin, n ∈ Z x=(Pi/3)k, k ∈ Z или х=(Pi/2)*n, n ∈ Z О т в е т. (Pi/3)k; (Pi/2)*n, k, n ∈ Z к задаче 22563

SOVA ✎ к задаче 22564

vk397114329 ✎ Решение: Из тождества sin^2x+cos^2x=1 найдем cosx=sgrt(1-sin^2x)=sgrt(1-0.64)=0.6 По определению cosA=AC/AB. отсюда АВ=AC/cosA. AB=9/0.6=15. Ответ 15 к задаче 11947

SOVA ✎ к задаче 22562