Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 59297 ...

Условие

Исследовать ряд на сходимость

Σ (from n=1 to ∞) (n^(n+2)) / ((2n^2 + 1)^(n/2))

математика ВУЗ 239

Решение

Применяем радикальный признак Коши

[m]lim_{n → ∞ }\sqrt[n]{a_{n}}=lim_{n → ∞ }\sqrt[n]{\frac{n^{n+2}}{(2n^2+1)^{\frac{n}{2}}}}=lim_{n → ∞ }\frac{n^{\frac{n+2}{n}}}{(2n^2+1)^{\frac{1}{2}}}=lim_{n → ∞ }\frac{n^{1+\frac{2}{n}}}{\sqrt{2n^2+1}}=\frac{1}{\sqrt{2}} < 1[/m]


Сходится

Написать комментарий

Меню

Присоединяйся в ВК