Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 57402 Один заказ выполняется двумя мастерами...

Условие

Один заказ выполняется двумя мастерами совместно за 10 дней. В то же время, когда первый мастер выполняет этот заказ, второй мастер может выполнить
3/5 часть работы. После того, как первый рабочий проработал 4 дня, его сменил второй рабочий и проработал 16 дней. За сколько дней онсовместно выполнят оставшуюся часть работы?

80

Решение

Заказ это объём работы равный в данном случае единице.

Пусть x дней понадобится первому, y дней понадобится второму.

(1/x) часть работы выполнит первый за один день
(1/y) часть работы выполнит второй за один день

(1/x)+(1/у) часть работы выполнят вдвоем за один день, что по условию равно (1/10):
Уравнение:
[b](1/x) +(1/y)=(1/10)[/b]

По условию "когда первый мастер выполняет этот заказ, второй мастер может выполнить
3/5 часть работы"

первый мастер выполняет этот заказ за х дней. Второй, работая х дней с производительностью (1/y) выполнит (3/5) заказа.

Уравнение:
[b]x*(1/y) =(3/5)*1[/b]

Система уравнений:

{[b](1/x) +(1/y)=(1/10)[/b]
{[b]x*(1/y) =(3/5)*1[/b] ⇒ x=(3/5)y и подставляем в первое

(5/3у)+(1/y)=(1/10)

(5/3у)+(3/3y)=(1/10)
80=3y

y=80/3

x=16

Вопрос задачи:

После того как
4*(1/x) +16 *( 1/y) часть - выполнят

т.е

4*(1/16)+16*(3/80)=(1/4)+(3/5)=17/20 часть выполнят

останется

1-4*(1/x) -16 *( 1/y) =1-(17/20)=3/20 часть .

Вопрос, за сколько дней выполнят (3/20)

если вдвоем в день выполняют (1/10)


(3/20):(1/10)=1,5

За [b]1,5 [/b]дня выполнят вдвоем оставшуюся часть

Написать комментарий

Категория

Меню

Присоединяйся в ВК