✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 574 В ат­трак­ци­о­не че­ло­век мас­сой 100

УСЛОВИЕ:

В ат­трак­ци­о­не че­ло­век мас­сой 100 кг со­вер­ша­ет «мерт­вую петлю» в вер­ти­каль­ной плос­ко­сти. Когда век­тор ско­ро­сти был на­прав­лен вер­ти­каль­но вниз, сила нор­маль­но­го дав­ленйя че­ло­ве­ка на си­де­ние была 2 000 Н. Най­ди­те ско­рость те­леж­ки в этой точке при ра­ди­у­се кру­го­вой тра­ек­то­рии 5 м.

РЕШЕНИЕ:

Вопрос к решению?
Нашли ошибку?
Показать имеющиеся вопросы (1)

ОТВЕТ:

в решение

Добавил slava191, просмотры: ☺ 7070 ⌚ 01.02.2014. физика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
См.фото (прикреплено изображение)
✎ к задаче 43615
P=mg/S=0,625*9,8/25*10^-4=2450 Па
✎ к задаче 43631
Вводим в рассмотрение гипотезы:
H_(1) - " из 1 в 2 переложили белый шар"
p(H_(1))=8/12
H_(2) - " из 1 в 2 переложили красный шар"
p(H_(2))=4/12
p(H_(1))+p(H_(2))=1
Гипотезы выбраны верно.

A- " из второй урны достали красный шар"
p(A/H_(1))=2/9 ( во второй 6 белых, 2 красных и переложили белый)
p(A/H_(2))=3/9

p(A)=p(H_(1))*p(A/H_(1))+p(H_(2))*p(A/H_(2))=

=(8/12)*(2/9)+(4/12)*(3/9)= считаем самостоятельно
✎ к задаче 43616
По свойству плотности вероятности
∫ ^(+ ∞ )_(- ∞ )f(x)dx=1

Считаем интеграл от данной функции.

Так как функция задана тремя выражениями рассматриваем интеграл как сумму интегралов:


∫^(+ ∞)_(- ∞ )f(x)dx=

=∫^(0)_(- ∞ )[b]0[/b](x)dx+∫^(1)_(0)[b]a(x+10)[/b]dx+∫^(+ ∞ )_(1)[b]0[/b]dx=

=0+a*((x^2/2)+10x)|^(1)_(0)+0=

=a*((1/2)+10)=10,5a

10,5a=1 ⇒[b] a=2/21[/b]
✎ к задаче 43617
\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x-1}=\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}\cdot(\frac{x+1}{x+3})^{-1} =

=\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}\cdot\lim_{x \to\infty }(\frac{x+1}{x+3})^{-1}=


\lim_{x \to\infty }(\frac{x+1}{x+3})^{-1}= 1^{-1}=1


\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}=\lim_{x \to\infty }(\frac{\frac{x+1}{x}}{\frac{x+3}{x}})^{4x}=

=\lim_{x \to\infty }\frac{(1+\frac{1}{x})^{x})^{4}}{(1+\frac{3}{x})^{x})^{4}}=\frac{e^{4}}{(e^{3})^{4}}=e^{4-12}=e^{-8}



✎ к задаче 43623