✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 570 Объ­яс­ни­те, ос­но­вы­ва­ясь на

УСЛОВИЕ:

Объ­яс­ни­те, ос­но­вы­ва­ясь на из­вест­ных фи­зи­че­ских за­ко­нах и за­ко­но­мер­но­стях, по­че­му длины ор­ган­ных труб раз­ные: у труб с вы­со­ки­ми то­на­ми - ма­лень­кие, а у ба­со­вых труб - боль­шие. Ор­ган­ная труба от­кры­та с обоих кон­цов и зву­чит при про­ду­ва­нии через неё по­то­ка воз­ду­ха.

РЕШЕНИЕ:

Гром­кий звук бы­ва­ет, когда на вы­хо­де из ор­ган­ной трубы уста­нав­ли­ва­ет­ся пуч­ность сто­я­чей волны, так как вб­ли­зи пуч­но­сти ко­ле­ба­ния воз­ду­ха про­ис­хо­дят с мак­си­маль­ной ам­пли­ту­дой, а ам­пли­ту­да опре­де­ля­ет гром­кость звука.

2. По­сколь­ку труба от­кры­та с обоих кон­цов, то пуч­ность также долж­на уста­нав­ли­вать­ся и на входе трубы.

3. По­это­му для наи­бо­лее гром­ко­го зву­ча­ния ми­ни­маль­ная длина трубы долж­на быть равна по­ло­ви­не длины волны - при этом по­се­ре­ди­не трубы на­хо­дит­ся узел сто­я­чей волны, а на ее кон­цах - две пуч­но­сти.

4. Звуки вы­со­кой ча­сто­ты v со­от­вет­ству­ют ма­лень­ким дли­нам волн, а низ­кой ча­сто­ты - боль­шим дли­нам волн c/v, по­сколь­ку длина волны , а ско­рость звука с не за­ви­сит от его ча­сто­ты.

5. Таким об­ра­зом, раз­ме­ры трубы про­пор­ци­о­наль­ны длине волны звука: чем ча­сто­та звука выше, тем длина трубы мень­ше, и на­о­бо­рот.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

в решение

Добавил slava191, просмотры: ☺ 2227 ⌚ 01.02.2014. физика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последнии решения
Второе уравнение имеет решения при a>0 [b] (!) [/b]

{x^4-y^4=12a-28;
{x^2+y^2=a

{(x^2-y^2)*(x^2+y^2)=12a-28
{x^2+y^2=a

{(x^2-y^2)*a=12a-28
{x^2+y^2=a ⇒ y^2=a-x^2

{(x^2-a+x^2)*a=12a-28
{y^2=a-x^2

{2ax^2= a^2+12a-28
{y^2=a- ((a^2+12a-28)/2a)

{x^2=(a^2+12a-28)/2a
{y^2=(a^2-12a+28)/2a


Первое уравнение имеет два корня при
(a^2+12a-28)/2a >0
Второе уравнение имеет два корня при
(a^2-12a+28)/2a >0
Учитывая a>0 [b] (!) [/b]

остается решить cистему неравенств:
{a^2+12a-28 >0⇒ a < -14 или a>2
{a^2-12a+28 >0 ⇒ a<6-4sqrt(2) или a> 6+4sqrt(2)

О т в е т. a > 6+sqrt(2)
[удалить]
✎ к задаче 31102
По правилу треугольника
vector{AB}+vector{BC}=vector{AC}

⇒ vector{AC} =vector{a}+vector{b}

По правилу треугольника
vector{AB} + vector{BM} =vector{AM}

Так как

vector{АМ}=(1/2)*vector{AC} ⇒

vector{AМ} =(1/2)*vector{a}+(1/2)*vector{b}

значит

vector{а} + vector{BM} =(1/2)*vector{a}+(1/2)*vector{b}




vector{BM} =(1/2)*vector{a}+(1/2)*vector{b}- vector{а}



vector{BM} =(1/2)*vector{b}-(1/2)*vector{a}
[удалить]
✎ к задаче 31100
Выражаем из второго уравнения у
2y=-1-3x;
y=(1/2)*(-1-3x)

и подставляем в первое уравнение:

x^2+x*(1/2)*(-1-3x)-3*((1/2)*(-1-3x)=9

Раскрываем скобки и приводим подобные слагаемые.

x^2-8x+15=0
D=64-60=4
x_(1)=(8-2)/2=3; x_(2)=(8+2)/2=5
y_(1)=(1/2)*(-1-3*3)=-5; у_(2)=(1/2)*(-1-3*5)=-8

О т в е т. (3;-5);(5;-8)

Выражаем из второго уравнения х
3х= -1 -2y;
x=(1/3)*(-1-2x)

и подставляем в первое уравнение:

(1/9)*(-1-2y)^2+(1/3)*y*(-1-2y)-3y=9

Раскрываем скобки и приводим подобные слагаемые.
y^2+13y+40=0
D=169-160=9
y_(1)=-8; y_(2)=-5
x_(1)=5; x_(2)=3

О т в е т. (3;-5);(5;-8)
[удалить]
✎ к задаче 31099
ОДЗ:
8-2x ≥ 0
2x ≤ 8
x ≤ 4
х ∈ (- ∞ ;4]

Возводим обе части уравнения в квадрат
8-2x=6^2
-2x=36-8
-2x=28
x=-14
-14 ∈ ОДЗ
О т в е т. -14
[удалить]
✎ к задаче 31098
(прикреплено изображение) [удалить]
✎ к задаче 31095