✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 569 По пер­во­му за­ко­ну Сто­ле­то­ва

УСЛОВИЕ:

По пер­во­му за­ко­ну Сто­ле­то­ва фо­то­ток на­сы­ще­ния за­ви­сит от ин­тен­сив­но­сти па­да­ю­ще­го света, то есть от ко­ли­че­ства фо­то­нов, па­да­ю­щих на фо­то­ка­тод в еди­ни­цу вре­ме­ни. При ис­поль­зо­ва­нии линзы та­ко­го же диа­мет­ра, но с мень­шим фо­кус­ным рас­сто­я­ни­ем, те­лес­ный угол, под ко­то­рым из ис­точ­ни­ка видно линзу, уве­ли­чи­ва­ет­ся. Фо­то­ны летят от ис­точ­ни­ка во все сто­ро­ны рав­но­мер­но, по­это­му ре­зуль­ти­ру­ю­щий поток фо­то­нов, по­па­да­ю­щих на фо­то­ка­тод в ре­зуль­та­те за­ме­ны линзы, уве­ли­чи­ва­ет­ся. А зна­чит, уве­ли­чи­ва­ет­ся и ток на­сы­ще­ния.

РЕШЕНИЕ:

1. Когда лампа на­гре­ет ре­зин­ки слева от оси ко­ле­са, они со­жмут­ся и сдви­нут обод ко­ле­са на­пра­во.
2. При этом центр тя­же­сти ко­ле­са сме­стит­ся впра­во, и по­явит­ся мо­мент силы тя­же­сти от­но­си­тель­но оси ко­ле­са, стре­мя­щий­ся по­вер­нуть ко­ле­со впра­во.Рав­но­ве­сие ко­ле­са на­ру­шит­ся, и оно начнёт вра­щать­ся по ча­со­вой стрел­ке.
3. При вра­ще­нии ко­ле­са на­гре­тые ре­зин­ки будут уда­лять­ся от лампы и охла­ждать­ся за счет теп­ло­об­ме­на с окру­жа­ю­щей сре­дой, а не­на­гре­тые ре­зин­ки будут при­бли­жать­ся к лампе и на­гре­вать­ся её из­лу­че­ни­ем. Опи­сан­ные про­цес­сы будут по­вто­рять­ся. В ре­зуль­та­те ко­ле­со будет не­пре­рыв­но вра­щать­ся, если на­гре­тые ре­зин­ки за время его обо­ро­та будут успе­вать до­ста­точ­но охла­дить­ся.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

в решение

Добавил slava191, просмотры: ☺ 1384 ⌚ 01.02.2014. физика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последнии решения
vector{a}=(1; -2; -2)

Пусть vector{x}=(x_(1);x_(2);x_(3))

Координаты коллинеарных векторов пропорциональны.
Значит
x_(1)/1=x_(2)/(-2)=x_(3)/(-2) = k

x_(1)=k
x_(2)=-2k
x_(3)=-2k

|vector{x}|=sqrt((k^2)+(-2k)^2+(-2k)^2)=sqrt(9k^2)=3|k|

По условию |vector{x}|=15

3*|k|=15
|k|=5
k= ± 5

При k=-5
vector{x}=(5;-2*5;-2*5)=(5;-10;-10)

При k=-5
vector{x}=(-5;-2*(-5);-2*(-5))=(-5;10;10)

О т в е т. (-5;10;10) образует с vector{j} острый угол, так как
cos β =2/|vector{x}|=2/15 > 0
[удалить]
✎ к задаче 30240
1
1) ∫ ^(3)_(1)(x^4+x-9)dx=((x^5/5)+(x^2/2)-9x)|^(3)_(1)=

=((3^5/5)+(3^2/2)-9*3)-((1^5/5)+(1^2/2)-9*1)=

=(243/5)+(9/2)-27)-((1/5)-(1/2)-9)=

=(243-1)/5+(9-1)/2 -27+9=48,5+4-18=34,5

2) ∫ ^(3)_(2)dx/(x-1) =
подведение под дифференциал
d(x-1)=(x-1)`*dx=1*dx=dx

= ∫ ^(3)_(2)d(х-1)/(x-1) = ( табличный интеграл ∫du/(u) )

=(ln|x-1|)|^(3)_(2)=ln(3-1)-ln(2-1)=ln2-ln1=ln2-0=ln2

3) ∫ ^(5)_(4)dx/sqrt(x-3) =

подведение под дифференциал
d(x-3)=(x-3)`*dx=1*dx=dx

= ∫ ^(5)_(4)d(х-3)/sqrt(x-3) = ( табличный интеграл ∫du/sqrt(u) )

= (2*sqrt(x-3))|^(5)_(4)=2sqrt(5-3)-2sqrt(4-3)=
=2sqrt(2)-2

4) ∫ ^(2)_(1)(x^3-2)*x^2dx=раскрываем скобки

= ∫ ^(2)_(1)(x^3*x^2-2x^2)dx= свойства интегрирования:
интеграл от разности равен разности интегралов, постоянный множитель можно выносить за знак интеграла)

= ∫ ^(2)_(1)x^5dx - 2∫ ^(2)_(1)x^2dx=

=(x^6/6)|^(2)_(1) -2*(x^3/3)|^(2)_(1)=

=(2^6/6)-(1^6/6)-2*((2^3/3)-(1^3/3))=

=(32/3)-(1/6)-(16/3)+(2/3)=35/6

5) ∫ ^(1)_(0)(2+x)e^(x)dx
интегрирование по частям ∫ udv=u*v- ∫ v*du

Обозначаем
u=(2+x) ⇒ du=(2+x)`dx ; du=dx
dv=e^(x)dx ⇒ ∫ dv= ∫ e^(x)dx ⇒ v =e^(x)

∫ (2+x)e^(x)dx=(2+x)*e^(x)- ∫e^(x)*dx = (2+x)*e^(x)+e^(x)=(2+x+1)*e^(x)


∫ ^(1)_(0)(2+x)e^(x)dx=((3+x)*e^(x)| ^(1)_(0) =(3+1)*e-(3+0)*e^(0)=

=4e-3

6) ∫ ^(2)_(1)3x*lnxdx=
интегрирование по частям:
[u=lnx ⇒ du=(1/x)dx;
dv=3xdx ⇒ v=3x^2/2

∫ ^(2)_(1)3x*lnxdx= ((3/2)x^2*lnx)|^(2)_(1)-∫ ^(2)_(1)(3x/2)dx=

= (3/2)*2^2*ln2-(3/2)*1^2*ln1-(3x^2/4)|^(2)_(1)=

=6ln2 - 0 - ((3*2^2/4)-(3*1/4)) =

=6ln2 -(3-3/4)= 6 ln2 - (9/4)

2

1) S= ∫^(4)_(2)(3x-1)dx=((3x^2/2)-x)|^(4)_(2)=(24-4)-(6-2)=20-4=16

2) S=∫^(3)_(0)((-1/3)x^2+3)dx=

=((-1/3)*(x^3/3) +3x)|^(3)_(0)=(-1/3)*(3^3/3)+3*3=-3+9=6

3)
Находим абсциссы точек пересечения графиков:
-x^2+6=2x+3;
x^2+2x-3=0
D=4-4*(-3)=16
x_(1)=(-2-4)/2=-3; х_(2)=(-2+4)/2=1

S= ∫^(1)_(-3) ((-x^2+6)-(2x+3))dx=

= ∫^(1)_(-3)(-x^2-2x+3)dx= ((-x^3/3)-(2x^2/2)+3x)|^(1)_(-3)=

=(-1/3)-1+3-(9-9-9)=10(2/3)
(прикреплено изображение) [удалить]
✎ к задаче 30238
6
1) lim_(x→1)(x^3-4x^2-2)=1^3-4*1^2-2=-5;

2) lim_(x→2)(x^4-5x+6)/(8x^2-3)=(2^4-5*2+6)/(8*2^3-3)=12/29

3)lim_(x→2)(5x-10)/(x^2-4)=(0/0) это неопределенность. Ее надо устранить. Раскладываем и числитель и знаменатель на множители:
lim_(x→2)(5(x-2))/((x-2)*(х+2))= можно сократить на (х-2), это не 0, х только стремится к 2,
=lim_(x→2)(5)/(x+2)=5/(2+4)=5/6

4) lim_(x→0,5)(10x^2-x-2)/(2x-1)=(0/0)
Раскладываем и числитель и знаменатель на множители:
lim_(x→0,5)((2x-1)(5x+2))/(2x-1)= можно сократить на (2х-1),
=lim_(x→0,5)(5x+2)=4,5

5) lim_(x→2)(x^2+3x-10)/(3x^2-5x-2)=(0/0)
Раскладываем и числитель и знаменатель на множители:
lim_(x→2)((x-2)(x+5))/((x-2)(3x+1))= можно сократить на (х-2),
=lim_(x→2)(x+5)/(3x+1)=(2+5)/(3*2+1)=7/7=1

6) lim_(x→5)(sqrt(x-1)-2)/(x-5)=(0/0)
Умножаем и числитель и знаменатель на
(sqrt(x-1)+2)
lim_(x→5)(sqrt(x-1)-2)(sqrt(x-1)+2)/((x-5)*(sqrt(x-1)+2))=
=lim_(x→5)(sqrt(x-1))^2-2^2)/((x-5)*(sqrt(x-1)+2))=
=lim_(x→5)(x-1-4)/((x-5)*(sqrt(x-1)+2))= сокращаем на (х-5)=
=lim_(x→5)1/(sqrt(x-1)+2)=1/(sqrt(5-1)+2)=1/4
(прикреплено изображение) [удалить]
✎ к задаче 30237
Это удалите, баллы к Вам вернутся и разделите баллы на количество вопросов. [удалить]
✎ к задаче 30236
(x^2+(x+a))^2=2x^4+2*(x+a)^2
Раскрываем скобки:
x^4+2*x^2*(x+a)+(x+a)^2=2x^4+2*(x+a)^2
x^4-2*x^2*(x+a)+(x+a)^2=0
(x^2-(x+a))^2=0
x^2-x-a=0
Квадратное уравнение.
Решаем графически.

График y=x^2-x-a - парабола, ветви вверх.

Чтобы парабола пересекала ось Ох в единственной точке отрезка [0;2] необходимо выполнение условий:
1)
{f(0) ≥ 0 ⇒ 0^2 -0 - a ≥0 ⇒ a≤0
{f(2) < 0 ⇒ 2^2 - 2 - a <0 ⇒ a>2

нет пересечения множеств a≤0 и a > 2

2)
{f(0) < 0 ⇒ -a < 0 ⇒ a > 0
{f(2) ≥ 2 ⇒ a ≤ 2
(0;2]

См. рисунок.
Парабола должна быть расположена примерно так, как на рисунке.

О т в е т. (0;2]
(прикреплено изображение) [удалить]
✎ к задаче 30233