✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 569 По пер­во­му за­ко­ну Сто­ле­то­ва

УСЛОВИЕ:

По пер­во­му за­ко­ну Сто­ле­то­ва фо­то­ток на­сы­ще­ния за­ви­сит от ин­тен­сив­но­сти па­да­ю­ще­го света, то есть от ко­ли­че­ства фо­то­нов, па­да­ю­щих на фо­то­ка­тод в еди­ни­цу вре­ме­ни. При ис­поль­зо­ва­нии линзы та­ко­го же диа­мет­ра, но с мень­шим фо­кус­ным рас­сто­я­ни­ем, те­лес­ный угол, под ко­то­рым из ис­точ­ни­ка видно линзу, уве­ли­чи­ва­ет­ся. Фо­то­ны летят от ис­точ­ни­ка во все сто­ро­ны рав­но­мер­но, по­это­му ре­зуль­ти­ру­ю­щий поток фо­то­нов, по­па­да­ю­щих на фо­то­ка­тод в ре­зуль­та­те за­ме­ны линзы, уве­ли­чи­ва­ет­ся. А зна­чит, уве­ли­чи­ва­ет­ся и ток на­сы­ще­ния.

РЕШЕНИЕ:

1. Когда лампа на­гре­ет ре­зин­ки слева от оси ко­ле­са, они со­жмут­ся и сдви­нут обод ко­ле­са на­пра­во.
2. При этом центр тя­же­сти ко­ле­са сме­стит­ся впра­во, и по­явит­ся мо­мент силы тя­же­сти от­но­си­тель­но оси ко­ле­са, стре­мя­щий­ся по­вер­нуть ко­ле­со впра­во.Рав­но­ве­сие ко­ле­са на­ру­шит­ся, и оно начнёт вра­щать­ся по ча­со­вой стрел­ке.
3. При вра­ще­нии ко­ле­са на­гре­тые ре­зин­ки будут уда­лять­ся от лампы и охла­ждать­ся за счет теп­ло­об­ме­на с окру­жа­ю­щей сре­дой, а не­на­гре­тые ре­зин­ки будут при­бли­жать­ся к лампе и на­гре­вать­ся её из­лу­че­ни­ем. Опи­сан­ные про­цес­сы будут по­вто­рять­ся. В ре­зуль­та­те ко­ле­со будет не­пре­рыв­но вра­щать­ся, если на­гре­тые ре­зин­ки за время его обо­ро­та будут успе­вать до­ста­точ­но охла­дить­ся.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

в решение

Добавил slava191, просмотры: ☺ 1630 ⌚ 01.02.2014. физика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Вводим в рассмотрение события ( гипотезы):
H_(1)-"из первого ящика во второй переложили два белых шарика"
H_(2)-"из первого ящика во второй переложили два черных шарика"
H_(3)-"из первого ящика во второй переложили один белый и один черный или один черный и один белый шарик"

p(H_(1))=\frac{2}{6}\cdot\frac{1}{5}=\frac{2}{30}
p(H_(2))=\frac{4}{6}\cdot\frac{3}{5}=\frac{12}{30}
p(H_(3))=\frac{2}{6}\cdot\frac{4}{5}+\frac{4}{6}\cdot\frac{2}{5}=\frac{16}{30}

A-" из второго ящика вынут белый шарик"

p(A/H_(1))=\frac{5}{6}
p(A/H_(2))=\frac{3}{6}
p(A/H_(3))=\frac{4}{6}

По формуле полной вероятности:
p(A)=p(H_(1))*p(A/H_(1))+p(H_(2))*p(A/H_(2))+p(H_(3))*p(A/H_(3))=

=\frac{2}{30}\cdot\frac{5}{6}+\frac{12}{30}\cdot\frac{3}{6}+\frac{16}{30}\cdot\frac{4}{6}=\frac{11}{18}



✎ к задаче 40763
(прикреплено изображение)
✎ к задаче 40760
(прикреплено изображение)
✎ к задаче 40761
cos ∠ C=-3/4, значит угол С - тупой.
∠ С= ∠ B
∠ D= ∠ A - острые.

Сумма углов, прилежащих к боковым сторонам трапеции равна 180 градусов.

cos ∠ D=cos(180 ° - ∠ C)=-cos ∠ C=-(-3/4)=3/4

Теперь легко найти высоту трапеции и нижнее основание

Проводим высоты ВК и СМ из точек В и С на AD
КМ=ВС=5 см

AК=МD=СD*cos ∠ C=8*(3/4)=6
AD=AK+KM+MD=6+5+6=17

СM^2=CD^2-MD^2=8^2-6^2=64-36=28

CM=sqrt(28)=sqrt(4*7)=2sqrt(7)

S(трапеции)=(AD+BC)*CM/2=(17+5)*(2sqrt(7))/2=22sqrt(7)


(прикреплено изображение)
✎ к задаче 40761
(прикреплено изображение)
✎ к задаче 40755