✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 568 В уста­нов­ке по на­блю­де­нию

УСЛОВИЕ:

В уста­нов­ке по на­блю­де­нию фо­то­эф­фек­та свет от то­чеч­но­го ис­точ­ни­ка S, прой­дя через со­би­ра­ю­щую линзу, па­да­ет на фо­то­ка­тод па­рал­лель­ным пуч­ком. В схему внес­ли из­ме­не­ние: на место пер­во­на­чаль­ной линзы по­ста­ви­ли со­би­ра­ю­щую линзу того же диа­мет­ра, но с мень­шим фо­кус­ным рас­сто­я­ни­ем. Ис­точ­ник света пе­ре­ме­сти­ли вдоль глав­ной оп­ти­че­ской оси линзы так, что на фо­то­ка­тод свет снова стал па­дать па­рал­лель­ным пуч­ком. Как из­ме­нил­ся при этом (умень­шил­ся или уве­ли­чил­ся) фо­то­ток на­сы­ще­ния? Объ­яс­ни­те, по­че­му из­ме­ня­ет­ся фо­то­ток на­сы­ще­ния, и ука­жи­те, какие фи­зи­че­ские за­ко­но­мер­но­сти Вы ис­поль­зо­ва­ли для объ­яс­не­ния.

РЕШЕНИЕ:

Еще вариант ответа смотрите тут: [link=https://reshimvse.com/zadacha.php?id=20964]

По пер­во­му за­ко­ну Сто­ле­то­ва фо­то­ток на­сы­ще­ния за­ви­сит от ин­тен­сив­но­сти па­да­ю­ще­го света, то есть от ко­ли­че­ства фо­то­нов, па­да­ю­щих на фо­то­ка­тод в еди­ни­цу вре­ме­ни. При ис­поль­зо­ва­нии линзы та­ко­го же диа­мет­ра, но с мень­шим фо­кус­ным рас­сто­я­ни­ем, те­лес­ный угол, под ко­то­рым из ис­точ­ни­ка видно линзу, уве­ли­чи­ва­ет­ся. Фо­то­ны летят от ис­точ­ни­ка во все сто­ро­ны рав­но­мер­но, по­это­му ре­зуль­ти­ру­ю­щий поток фо­то­нов, по­па­да­ю­щих на фо­то­ка­тод в ре­зуль­та­те за­ме­ны линзы, уве­ли­чи­ва­ет­ся. А зна­чит, уве­ли­чи­ва­ет­ся и ток на­сы­ще­ния.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

в решение

Добавил slava191, просмотры: ☺ 3047 ⌚ 01.02.2014. физика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 39721
По определению.
a) область определения функции симметрична относительно точки О;
б)
и f(-x)=f(x) для любого х из области определения, тогда функция чЁтная

f(-x)= - f(x) для любого х из области определения, тогда функция нечЁтная

7.11
1)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= 19*(-x)^2=19x^2

f(-x) =f(x)
[b]Функция является чЁтной [/b]

2)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= (-x)^2 - 34=x^2 - 34

f(-x) =f(x)
[b]Функция является чЁтной [/b]

3)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= (-x)^4-7*(-x)^2=x^4-7x^2

f(-x) =f(x)
[b]Функция является чЁтной [/b]

4)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= (-x)^2- (-x)^4=x^2-x^4

f(-x) =f(x)
[b]Функция является чЁтной [/b]

5)

а) область определения функции (- ∞ ;0) U(0; + ∞ ) - симметрична относительно точки О;
б) f(-x)= \frac{10}{(-x)^{2}}= \frac{10}{x^{2}}

f(-x) = f(x)
[b]Функция является чЁтной [/b]

6)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= - \frac{8}{3+(-x)^{2}}= -\frac{8}{3+x^{2}}

f(-x) = f(x)
[b]Функция является чЁтной [/b]


7.14
1)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= 23*(-x)=-23x

f(-x) = - f(x)
[b]Функция является нечЁтной [/b]

2)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= 5*(-x)^3= - 5x^3

f(-x) = - f(x)
[b]Функция является нечЁтной [/b]


3)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= - 9*(-x)^3 = 9x^3

f(-x) = - f(x)
[b]Функция является нечЁтной [/b]


3)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= 23*(-x)=-23x

f(-x) = - f(x)
[b]Функция является нечЁтной [/b]


4)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= -(-x)^3 + 2*(-x)=x^3-2*x=-(-x^3+2*x)
f(-x) = - f(x)
[b]Функция является нечЁтной[/b]

5)

а) область определения функции (- ∞ ;0) U (0;+ ∞ ) - симметрична относительно точки О;

б) f(-x)= \frac{7}{-x}+(-x)= -\frac{7}{x}-x=-(\frac{7}{x}+x)

f(-x) = - f(x)
[b]Функция является нечЁтной[/b]

6)

а)
а) область определения функции (- ∞ ;0) U (0;+ ∞ ) - симметрична относительно точки О;

б) f(-x)= -\frac{16}{-x}-(-x)= \frac{16}{x}+x=-(-\frac{16}{x}-x)

f(-x) = - f(x)
[b]Функция является нечЁтной[/b]
✎ к задаче 39719
По определению.
a) область определения функции симметрична относительно точки О;
б)
и f(-x)=f(x) для любого х из области определения, тогда функция чЁтная

f(-x)= - f(x) для любого х из области определения, тогда функция нечЁтная

1)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= -6*(-x)+(-x)^2=-6x+x^2
f(-x) ≠ f(x)
f(-x) ≠ - f(x)
[b]Функция не является ни чЁтной, ни нечЁтной
[/b]

2)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= |-x| -(-x)^3=|x|+x^3
f(-x) ≠ f(x)
f(-x) ≠ - f(x)
[b]Функция не является ни чЁтной, ни нечЁтной[/b]

3)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)=sqrt((-x)^4+1)+12|-x|=sqrt(x^4+1)+12|x|
f(-x) = f(x)

[b]Функция является чЁтной[/b]

4)

а) область определения функции (- ∞ ; + ∞ ) - симметрична относительно точки О;
б) f(-x)= 0,7*(-x)^3-(-x)*|-x|=-0,7x^3+x*|x|=-(0,7x^3-x|x|)
f(-x) = - f(x)
[b]Функция является нечЁтной[/b]

5)

а) область определения функции (- ∞ ;-sqrt(5)) U (-sqrt(5);sqrt(5))U(sqrt(5); + ∞ ) - симметрична относительно точки О;

б) f(-x)= -\frac{1}{(-x)^{2}-5}+(-x)= -\frac{1}{x^{2}-5}-x

f(-x) ≠ f(x)
f(-x) ≠ -f(x)
[b]Функция не является ни чЁтной, ни нечЁтной[/b]

6)

а) область определения функции (- ∞ ;-1) U (-1; + ∞ ) - [b]НЕ[/b]симметрична относительно точки О;

не выполняется первый пункт определения, второй не проверяем!!!

[b]Функция не является ни чЁтной, ни нечЁтной[/b]

7)

а) область определения функции (- ∞ ;-sqrt(2)) U (-sqrt(2);sqrt(2))U(sqrt(2); + ∞ ) - симметрична относительно точки О;

б) f(-x)= \frac{4\cdot (-x)}{(-x)^{4}-2}= -\frac{4x}{x^{4}-2}

f(-x) = f(x)

[b]Функция является чЁтной[/b]

8)

а) область определения функции (- ∞ ;0) U (0; + ∞ ) - симметрична относительно точки О;

б) f(-x)= \frac{9+(-x)^{2}}{(-x)^{3}}= -\frac{9+x^{2}}{x^{3}}

f(-x) = - f(x)
[b]Функция является нечЁтной[/b]
✎ к задаче 39718
(прикреплено изображение)
✎ к задаче 39717
Здесь можно решать просто "на пальцах", без уравнений. Лед начнет нагреваться и плавиться, а вода кристаллизоваться. Масса воды больше массы льда, значит заморозить всю воду лед не сможет, поэтому установившаяся температура не может лежать между -5 и нулем. Часть воды замерзнет, а лед нагреется до 0 и расплавится.
Но если составить уравнение теплового баланса, можно увидеть, что отведение от воды тепла на нагревание и плавление всего льда приведет к кристаллизации около 20 граммов воды.
С_(л)*m_(л)*5+m_(л)*λ=m'_(в)*λ
✎ к задаче 39695