✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 568 В уста­нов­ке по на­блю­де­нию

УСЛОВИЕ:

В уста­нов­ке по на­блю­де­нию фо­то­эф­фек­та свет от то­чеч­но­го ис­точ­ни­ка S, прой­дя через со­би­ра­ю­щую линзу, па­да­ет на фо­то­ка­тод па­рал­лель­ным пуч­ком. В схему внес­ли из­ме­не­ние: на место пер­во­на­чаль­ной линзы по­ста­ви­ли со­би­ра­ю­щую линзу того же диа­мет­ра, но с мень­шим фо­кус­ным рас­сто­я­ни­ем. Ис­точ­ник света пе­ре­ме­сти­ли вдоль глав­ной оп­ти­че­ской оси линзы так, что на фо­то­ка­тод свет снова стал па­дать па­рал­лель­ным пуч­ком. Как из­ме­нил­ся при этом (умень­шил­ся или уве­ли­чил­ся) фо­то­ток на­сы­ще­ния? Объ­яс­ни­те, по­че­му из­ме­ня­ет­ся фо­то­ток на­сы­ще­ния, и ука­жи­те, какие фи­зи­че­ские за­ко­но­мер­но­сти Вы ис­поль­зо­ва­ли для объ­яс­не­ния.

РЕШЕНИЕ:

Еще вариант ответа смотрите тут: [link=https://reshimvse.com/zadacha.php?id=20964]

По пер­во­му за­ко­ну Сто­ле­то­ва фо­то­ток на­сы­ще­ния за­ви­сит от ин­тен­сив­но­сти па­да­ю­ще­го света, то есть от ко­ли­че­ства фо­то­нов, па­да­ю­щих на фо­то­ка­тод в еди­ни­цу вре­ме­ни. При ис­поль­зо­ва­нии линзы та­ко­го же диа­мет­ра, но с мень­шим фо­кус­ным рас­сто­я­ни­ем, те­лес­ный угол, под ко­то­рым из ис­точ­ни­ка видно линзу, уве­ли­чи­ва­ет­ся. Фо­то­ны летят от ис­точ­ни­ка во все сто­ро­ны рав­но­мер­но, по­это­му ре­зуль­ти­ру­ю­щий поток фо­то­нов, по­па­да­ю­щих на фо­то­ка­тод в ре­зуль­та­те за­ме­ны линзы, уве­ли­чи­ва­ет­ся. А зна­чит, уве­ли­чи­ва­ет­ся и ток на­сы­ще­ния.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

в решение

Добавил slava191, просмотры: ☺ 3079 ⌚ 01.02.2014. физика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
E=kA^2/2 ⇒ A=sqrt(2E/k)
T=2πsqrt(m/k)
Vm=A*ω
ω=sqrt(k/m)
✎ к задаче 41612
T=2πsqrt(m/k) ⇒ m=(T/2π)^2k
T=13/35=0,37
✎ к задаче 41611
По формуле Тейлора с остаточным членов в форме Пеано:

sinx=x-(x^3/3!)+o(x^4)
tgx=x+(x^3/3) +о(x^4)

\lim_{x \to 0 }\frac{x-sinx}{x-tgx}=\lim_{x \to 0 }\frac{x-(x-\frac{x^3}{3!}+o(x^4))}{x-(x+\frac{x^3}{3}+o(x^4))}=\lim_{x \to 0 }\frac{\frac{x^3}{3!}+o(x^4))}{-\frac{x^3}{3}-o(x^4))}=\frac{\frac{1}{3!}+0}{-\frac{1}{3}+0}=-\frac{1}{2}

2 способ Правило Лопиталя

\lim_{x \to 0 }\frac{x-sinx}{x-tgx}=\lim_{x \to 0 }\frac{(x-sinx)`}{(x-tgx)`}=\lim_{x \to 0 }\frac{1-cosx}{1-\frac{1}{cos^2x}}=\lim_{x \to 0 }\frac{1-cosx}{\frac{cos^2x-1}{cos^2x}}=

=\lim_{x \to 0 }\frac{-1\cdot cos^2x}{cosx+1}=-\frac{1}{2}

(прикреплено изображение)
✎ к задаче 41610
При x → + ∞
(2)^(+ ∞ )=+ ∞

При x →- ∞
(2)^(- ∞ )=0
✎ к задаче 41609
(х-8)-2=8,
х-8=8+2,
х-8=10,
х=10+8,
х=18.
Ответ: 18.
✎ к задаче 41608