x→0
применяем правило Лопиталя
[m]lim_{x → 0}\frac{(e^{tgx}-1)`}{(tgx-x)`}=lim_{x → 0}\frac{e^{tgx}\cdot (tgx)`}{(tgx)`-(x)`}=lim_{x → 0}\frac{e^{tgx}\cdot \frac{1}{cos^2x}}{\frac{1}{cos^2x}-1}=[/m]
[m]=lim_{x → 0}\frac{e^{tgx}\cdot \frac{1}{cos^2x}}{\frac{1-cos^2x}{cos^2x}}=lim_{x → 0}\frac{e^{tgx}}{sin^2x}=(\frac{1}{0})= ∞ [/m]