1.3. y = x + arctg y.
[m]y`-\frac{1}{1+y^2}\cdot y`=1[/m]
[m]y`\cdot (1-\frac{1}{1+y^2})=1[/m]
[m]y`\cdot \frac{1+y^2-1}{1+y^2}=1[/m]
[m]y`\cdot \frac{y^2}{1+y^2}=1[/m]
[m]y`= \frac{y^2+1}{y^2}[/m]
[m]y``=( \frac{y^2+1}{y^2})`[/m]
[m]y``= \frac{(y^2+1)`\cdot y^2-(y^2+1)\cdot (y^2)`}{(y^2)^2}[/m]
[m]y``= \frac{2y\cdot y`\cdot y^2-(y^2+1)\cdot 2y\cdot y`}{y^4}[/m]
[m]y``= \frac{-2y\cdot y`}{y^4}[/m]
[m]y``= \frac{-2y`}{y^3}[/m]
[m]y``= \frac{-2\cdot\frac{y^2+1}{y^2} }{y^3}[/m]
[m]y``= \frac{-2(y^2+1)}{y^5}[/m]