{ x3 – y3 = 19(x – y)
{ x3 + y3 = 7(x + y)
x^3+y^3=(x+y)\cdot (x^2-xy+y^2)
\left\{\begin{matrix}
(x-y)\cdot (x^2+xy+y^2)=19(x-y)\\ (x+y)\cdot (x^2-xy+y^2)=7(x+y)\end{matrix}\right.
\left\{\begin{matrix}
(x-y)\cdot (x^2+xy+y^2)-19(x-y)=0\\ (x+y)\cdot (x^2-xy+y^2)-7(x+y)=0\end{matrix}\right.
\left\{\begin{matrix}
(x-y)\cdot (x^2+xy+y^2-19)=0\\ (x+y)\cdot (x^2-xy+y^2-7)=0\end{matrix}\right.
\left\{\begin{matrix}
x-y=0\\x+y=0\end{matrix}\right.\left\{\begin{matrix}
x-y=0\\ x^2-xy+y^2-7=0\end{matrix}\right.\left\{\begin{matrix}
x^2+xy+y^2-19=0\\ x+y=0\end{matrix}\right.\left\{\begin{matrix}
x^2+xy+y^2-19=0\\ x^2-xy+y^2-7=0\end{matrix}\right.