✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 544 На каком из графиков изображена

УСЛОВИЕ:

На каком из графиков изображена возможная зависимость пройденного пути от времени?
1) А
2) Б
3) В
4) Такой график отсутствует

РЕШЕНИЕ:

Путь — это физическая величина, показывающая пройденное телом расстояние. Иначе говоря, это длина пройденного участка траектории. По определению, путь есть величина положительная, которая может только возрастать со временем. Этому требованию удовлетворяет только график В.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

3

Добавил slava191, просмотры: ☺ 6042 ⌚ 30.01.2014. физика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последние решения
Разделим на х
y`-(1/x)*y=lnx/(x^2)

Линейное, первого порядка

Решают методом вариации произвольной постоянной или методом Бернулли.

В любом случае приходится решить два уравнения с разделяющимися переменными.

Метод Бернулли.
Решение y представлено в виде произведения двух [b]произвольных [/b]функций.

y=u*v
y`=u`*v+u*v`

Подставляем в уравнение:

u`*v+u*v`-(1/x)*u*v=lnx/(x^2)

u`*v+u*(v`-(1/x)*v)=lnx/(x^2)


Функцию v=v(x) выбирают так, чтобы

[b]v`-(1/x)*v=0[/b]

тогда

[b]u`*v-u*0=lnx/(x^2)[/b]


Решаем первое уравнение с разделяющимися переменными:
v`-(1/x)*v=0

dv/v=dx/x

ln|v|=ln|x|

[b]v=x[/b]

Решаем первое уравнение с разделяющимися переменными:

u`*x=lnx/(x^2)

u`=lnx/(x^3)

u= ∫ lnxdx/(x^3)=-lnx/(-2x^2)+(1/2) ∫ dx/x^3=

=-lnx/(-2x^2)-(1/(4x^2))+C

cчитали по частям

u=lnx; du=dx/x

dv=dx/x^3
v=-1/(2x^2)

Общее решение: y=(-lnx/(-2x^2)-(1/(4x^2))+C)*х можно раскрыть скобки.

Так как
y(1)=0
найдем частное решение:

0=-ln1/(-2)-(1/4)+C
C=1/4

y=(-lnx/(-2x^2)-(1/(4x^2))+(1/4))*х- частное решение
[удалить]
✎ к задаче 37478
Преобразования линейные - значит постоянный множитель можно выносить за знак преобразования

(T_(2) o T_(1))(v)=T_(2) (T_(1)v)=T_(2) (7v-7u)=7T_(2)v-7T_(2)u=

=-7*(4v+5u)-7*(6v+2u)=-28v-35u-42v-14u= [b]-49u-70v [/b]

(T_(2) o T_(1))(u)=T_(2) (T_(1)u)=T_(2) (-7v-6u)=-7T_(2)v-6T_(2)u=

=-7*(4v+5u)-6*(6v+2u)=-28v-35u-36v-12u= [b]-64v-47u [/b]
[удалить]
✎ к задаче 37470
Находим абсциссы точек пересечения графиков
3x^2+1=3x+7
3x^2–3x–6=0
x^2–x–2=0
D=9
x_(1)=–1; x_(2)=2

V=π ∫ ^(2)_(-1) ((3x+7)^2-(3x^2+1)^2)dx=

=π ∫ ^(2)_(-1) (9x^2+42x+49-9x^4-6x^2-1)dx=

=π ∫ ^(2)_(-1) (3x^2+42x+48-9x^4)dx=

=π*(x^3+21x^2+48x-(9x^5/5))|^(2)_(-1)=

=π*(2^3-(-1)^3+21*(4-1)+48(2-(-1))-(9/5)*(32-(-1)))=

=π*(9+63+144-(297/5))= [b]π*(183/5)[/b]
(прикреплено изображение) [удалить]
✎ к задаче 37473
Находим абсциссы точек пересечения графиков
3x^2+1=3x+7
3x^2-3x-6=0
x^2-x-2=0
D=9
x_(1)=-1; x_(2)=2

S= ∫^(2)_(-1) (3x+7-(3x^2+1))dx= ∫^(2)_(-1) (3x+6-3x^2)dx=

=((3x^2/2)+6x-(3x^3/3))|^(2)_(-1)=

=(3/2)*(4-1)+6*(2-(-1))-(2^3-(-1)^3)=

=(9/2)+18-9= [b]13,5[/b]
(прикреплено изображение) [удалить]
✎ к задаче 37475
(прикреплено изображение) [удалить]
✎ к задаче 37468