✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 533 В правильной шестиугольной пирамиде

УСЛОВИЕ:

В правильной шестиугольной пирамиде SABCDEF сторона основания AB=sqrt(3), боковое ребро SA = sqrt(7). Найдите расстояние от вершины A до плоскости BCS.

РЕШЕНИЕ:

Заметим, что AD параллельно BC, а значит, и всей плоскости BCS. Это значит, что все точки прямой AD равноудалены от плоскости BCS.
Пусть SH — высота треугольника BCS, SO — перпендикуляр, опущенный из точки S к плоскости основания пирамиды, при этом точка O принадлежит AD. Искомым расстоянием будет длина высоты OM прямоугольного треугольника SOH.

1) Найдём OH из равностороннего треугольника OBC: OH = BC*sqrt(3)/2 = 3/2
2) Найдём SH из прямоугольного треугольника BHS: SH = sqrt(SB^2-BH^2) = sqrt(sqrt(7)^2-(sqrt(3)/2)^2) = 5/2
3) Найдём SO из прямоугольного треугольника SOH: SO = sqrt(SH^2-OH^2) = 4/2
4) Искомое расстояние OM, зная все стороны прямоугольного треугольника SOH, можно, например, найти, записав выражение для его площади двумя разными способами:
S = SO*OH/2 = SH*OM/2, откуда
OM = SO*OH/SH = 4*3/5 = 6/5

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

6/5

Добавил slava191, просмотры: ☺ 2687 ⌚ 29.01.2014. математика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
Вводим в рассмотрение гипотезы:
H_(1) - " из 1 в 2 переложили белый шар"
p(H_(1))=8/12
H_(2) - " из 1 в 2 переложили красный шар"
p(H_(2))=4/12
p(H_(1))+p(H_(2))=1
Гипотезы выбраны верно.

A- " из второй урны достали красный шар"
p(A/H_(1))=2/9 ( во второй 6 белых, 2 красных и переложили белый)
p(A/H_(2))=3/9

p(A)=p(H_(1))*p(A/H_(1))+p(H_(2))*p(A/H_(2))=

=(8/12)*(2/9)+(4/12)*(3/9)= считаем самостоятельно
✎ к задаче 43616
По свойству плотности вероятности
∫ ^(+ ∞ )_(- ∞ )f(x)dx=1

Считаем интеграл от данной функции.

Так как функция задана тремя выражениями рассматриваем интеграл как сумму интегралов:


∫^(+ ∞)_(- ∞ )f(x)dx=

=∫^(0)_(- ∞ )[b]0[/b](x)dx+∫^(1)_(0)[b]a(x+10)[/b]dx+∫^(+ ∞ )_(1)[b]0[/b]dx=

=0+a*((x^2/2)+10x)|^(1)_(0)+0=

=a*((1/2)+10)=10,5a

10,5a=1 ⇒[b] a=2/21[/b]
✎ к задаче 43617
\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x-1}=\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}\cdot(\frac{x+1}{x+3})^{-1} =

=\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}\cdot\lim_{x \to\infty }(\frac{x+1}{x+3})^{-1}=


\lim_{x \to\infty }(\frac{x+1}{x+3})^{-1}= 1^{-1}=1


\lim_{x \to\infty }(\frac{x+1}{x+3})^{4x}=\lim_{x \to\infty }(\frac{\frac{x+1}{x}}{\frac{x+3}{x}})^{4x}=

=\lim_{x \to\infty }\frac{(1+\frac{1}{x})^{x})^{4}}{(1+\frac{3}{x})^{x})^{4}}=\frac{e^{4}}{(e^{3})^{4}}=e^{4-12}=e^{-8}



✎ к задаче 43623
(прикреплено изображение)
✎ к задаче 43609
(прикреплено изображение)
✎ к задаче 43611