✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 532 Найдите все значения а, при каждом из

УСЛОВИЕ:

Найдите все значения а, при каждом из которых наибольшее значение функции f(x)=x^2-7|x-a|-3x на отрезке [-6;6] принимает хотя бы на одном из концов этого отрезка.

РЕШЕНИЕ:

Для начала прикинем, как ведет себя функция на этом отрезке при изменении параметра a:

При x>a: f(x) = f1(x) = x^2-10x+7a
При x<a: f(x) = f2(x) = x^2+4x-7a
При x=a: f(x) = x^2-3x = a^2-3a

Функция может достигать максимального значения либо на границах отрезка, либо в точках максимума (если они есть), либо в особой точке (где выражение под модулем меняет свой знак, т.е. при x=a).

f1'(x) = (x^2-10x+7a)' = 2x-10. Экстремум в точке x=5, и это точка минимума (производная меняет знак с отрицательного на положительный).
f2'(x) = (x^2+4x-7a)' = 2x+4. Экстремум в точке x=-2, и это тоже точка минимума.
Так что максимумов у функции нет. Следовательно, наибольшего значения функция f(x) может достичь только либо на одной из границ отрезка [-6;6], либо в точке x=a.

Если a < -6 или a > 6, то функция всегда принимает максимальное значение на одной из границ отрезка, поскольку особая точка лежит вне его.

Если a принадлежит [-6;6], то условие выполняется, когда справедливо хотя бы одно из неравенств:

(1): f2(-6)>=f(a) (значение функции в левой границе отрезка больше ее значения в особой точке)
(2): f1(6)>=f(a) (значение функции в правой границе отрезка больше ее значения в особой точке)

(1): 36-24-7a >= a^2-3a
a^2+4a-12 <= 0
a принадлежит [-6;2]

(2): 36-60+7a >= a^2-3a
a^2-10a+24 <=0
a принадлежит [4;6]

Таким образом, функция f(x) принимает своё наибольшее значение на отрезке [-6;6] при всех значениях a от минус бесконечности до 2 включительно и от 4 включительно до плюс бесконечности.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

a ? (–?;2]?[4;+?)

Добавил slava191, просмотры: ☺ 2147 ⌚ 29.01.2014. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последние решения
(прикреплено изображение) [удалить]
✎ к задаче 34759
1+2+3+4+5=15
15*5=75
Сумма всех чисел таблицы 75
75:3=25 в каждой области.

О т в е т. cм рисунок
(прикреплено изображение) [удалить]
✎ к задаче 34733
Проведем высоту SO - пирамиды SАВСD
O- точка пересечения диагоналей квадрата
H=SO
V_(пирамиды SABCD)= [b](1/3)*S(квадрата АВСD) * H[/b]

EK- высота пирамиды EABC
ЕК- средняя линия Δ SBO
EK=H/2

V_(пирамиды EABC)=(1/3)*S( Δ АВС) * H/2

S( Δ АВС) =(1/2)S(квадрата АВСD)

V_(пирамиды EABC)=(1/3)*(1/2)S(квадрата АВСD) * H/2=
=(1/4)* [b] (1/3)*S(квадрата АВСD) * H[/b]= (1/4)V_(пирамиды SABCD)

Значит,
V _(тела)=V_(пирамиды SABCD)-V_(пирамиды EABC)=
=V_(пирамиды SABCD)- (1/4)V_(пирамиды SABCD)=

=(3/4)*V_(пирамиды SABCD)=(3/4)*34=51/2= [b]25,5[/b]

О т в е т. [b]25,5
[/b]
(прикреплено изображение) [удалить]
✎ к задаче 34752
СС_(1)||BB_(1)
∠ AC_(1)C - угол между CC_(1) и AC_(1), а значит и между
BB_(1) и AC_(1)
Находим его из прямоугольного равнобедренного треугольника
ACC_(1)
АС=СС_(1)=17

[b]∠ AC_(1)C=45 градусов.[/b]
(прикреплено изображение) [удалить]
✎ к задаче 34753
ОДЗ:
{x+3>0 ⇒ x > -3
{x+3 ≠ 1 ⇒ x ≠ -2
{x+2>0 ⇒ x > -2
{(x-1)^2>0 ⇒ x ≠ 1

(-2;1) U (1;+ ∞ )

Применяем обобщенный метод интервалов.
Находим нули функции
f(x)=(x^2+3x+2)*log_(x+3)(x+2)*log_(3)(x-1)^2

x^2+3x+2=0
D=9-4*2=1
x_(1)=(-3-1)/2=-2; х_(2)=(-3+1)/2=-1
[b]x_(1)=-2; х_(2)=-1[/b]

-(2) __-__ [-1] __+__

log_(x+3)(x+2)=0

x+2=(x+3)^(0)
x+2=1
[b]x=-1[/b]

(-2) __-__ [-1] ___ + ____

log_(3)(x-1)^2=0
(x-1)^2=3^(0)
(x-1)^2=1
x-1=-1 или x-1=1
[b]x=0 или х=2[/b]

(2) __+__ [0] __-___ [2] _ +__

Отмечаем найденные корни на области определения

(-2) __+_ [-1] _+_ [0] _-_ (1) __-_ [2] ___+__

О т в е т. {-1}U[0;1)U(1;2]
[удалить]
✎ к задаче 34755