y – f(xo) = f `(xo) · ( x – xo)
1)
f(x)=3x2–5x+12, xo=1
f(xo)=f(1)=3·12–5·1+12=10
f ` ( x) = (3x2–5x+12)` =6x–5
f `(xo)=f`(1)=6·1–5=1
y – 10 = 1·(x–1) ⇒ y=x+9 – уравнение касательной
О т в е т. y=x+9
2)
[m]f(x)=\frac{\sqrt{1+2x^2}}{x^3}[/m], xo=–2
[m] f(x_{o})=\frac{\sqrt{1+2\cdot (-2)^2}}{(-2)^3}=-\frac{3}{8}[/m]
[m]f`(x)=\frac{(\sqrt{1+2x^2})`\cdot x^3-\sqrt{1+2x^2}\cdot (x^3)`}{(x^3)^2}=[/m]
[m]=\frac{\frac{1}{2\sqrt{1+2x^2}}\cdot (1+2x^2)``\cdot x^3-\sqrt{1+2x^2}\cdot (3x^2)}{x^6}=[/m]
[m]=\frac{2x^4-3x^2\cdot(1+2x^2)}{\sqrt{1+2x^2}\cdot x^6}=\frac{-4x^2-3}{\sqrt{1+2x^2}\cdot x^4}[/m]
[m]f`(-2)=-\frac{19}{48}[/m]
[m]y-(-\frac{3}{8})=-\frac{19}{48}\cdot (x-(-2))[/m]
[m] y=-\frac{19}{48}\cdot x-\frac{56}{48} [/m]– уравнение касательной
О т в е т. [m] y=-\frac{19}{48}\cdot x-\frac{56}{48} [/m]