✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 53011 Pаскройте скобки, поставив глагол в

УСЛОВИЕ:

Pаскройте скобки, поставив глагол в нужную форму.
7) Can you hear what he (to say)?
8) The girl you (to talk) about (to be) the eldest daughter of my old friend.
14) Appetite (to come) with eating.
18) She often (to come) to see you? –Not so often, she (to be) a student now and (to be) very busy.

РЕШЕНИЕ ОТ vk201218220 ✪ ЛУЧШЕЕ РЕШЕНИЕ

Can you hear what he says?
The girl you are talking about is the eldest daughter of my old friend.
Appetite comes with eating.
She often comes to see you? –Not so often, she is a student now and is very busy.

Физика и математика школьникам и студентам на канале
[link=https://www.youtube.com/ФизматКласс]

Вопрос к решению?
Нашли ошибку?

Добавил vk340300196, просмотры: ☺ 55 ⌚ 2020-08-09 17:17:02. английский язык класс не задан класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
41.1
1) f`(x)=(3x-sqrt(3))`= производная суммы ([b]разности[/b]) равна сумме ([b]разности[/b]) производных=
=(3x)`-(sqrt(3))`= постоянный множитель можно выносить за знак производной=
=3*(х)`-(sqrt(3))`= по таблице
=3*1-0=3
[b]f`(x)=3[/b] - о т в е т.

2)
f`(x)=(x^2+3x-sqrt(2))`= производная суммы ([b]разности[/b]) равна сумме ([b]разности[/b]) производных=
=(x^2)+(3x)`-(sqrt(2))`= постоянный множитель можно выносить за знак производной=
=(x^2)+3*(х)`-(sqrt(2))`= по таблице
=2x+3*1-0=2x+3
[b]f`(x)=2x+3[/b]- о т в е т.

3)
f`(x)=(5x^(-4)+2x-sqrt(5))`= производная суммы ([b]разности[/b]) равна сумме ([b]разности[/b]) производных=
=(5x^(-4))+(2x)`-(sqrt(5))`= постоянный множитель можно выносить за знак производной=
=5(x^(-4))+2*(х)`-(sqrt(5))`= по таблице
=5*(-4)*x^(-5)+2*1-0=(-20/x^5)+2
[b]f`(x)=(-20/x^5)+2[/b]- о т в е т.


41.6
1)
f`(x)=2x+1,2

f`(x) ≥ 0 ⇒ 2x+1,2 ≥ 0 ⇒ [b] x ≥ -0,6[/b]- о т в е т.

3)
f`(x)=5x^4+333x^3

f`(x) ≥ 0 ⇒ 5x^4+333x^3 ≥ 0 ⇒ x^3*(5x+333) ≥ 0- о т в е т. (- ∞;-333/5]U[0;+ ∞ )

__+___ [-333/5] ______ [0] ___+___

41.14
1)

f(x)=(2/x)-(x/2)

f(x)=2*(x^(-1))-(1/2)*x

f `(x)=2*(-1)*x^(-2)-(1/2)

f `(x)=(-2/x^2)-(1/2)

f `(1)=(-2)-(1/2)=-2,5

2)
f(x)=(5/x)-(x^2/2)-5

f(x)=5*(x^(-1))-(1/2)*x^2-5

f `(x)=5*(-1)*x^(-2)-(1/2)*2*x

f `(x)=(-5/x^2)-x

f `(-2)=(-5/4)-(-2)=3/4


✎ к задаче 53503
(прикреплено изображение)
✎ к задаче 53502
Пример2.
z=1-sqrt(3)*i

z=x+y*i

x=1; y=-sqrt(3)

|z|=sqrt(x^2+y^2)

|z|=sqrt(1^2+(-sqrt(3))^2)=sqrt(4)=2

arg z=arctg (y/x)+π, x >0; y <0

arg z=arctg(-sqrt(3))+π=-(π/3)+π=2π/3

1-sqrt(3)*i=2*(cos(2π/3)+isin(2π/3))

По формуле Муавра

(1-sqrt(3)*i)^(30)=2^(30)*(cos(2π/3)*30+isin(2π/3)*30)=2^(30)*(cos(20π)+isin(20π))

arg z^(30)=20π

cos(20π)=cos0=1
sin(20π)=sin0=0

(1-sqrt(3)*i)^(30)=2^(30) - о т в е т. в алгебраической форме

Пример3
z_{1}=3\cdot e^{\frac{2\pi}{3}\cdot i}

z_{2}=2\cdot e^{\frac{\pi}{3}\cdot i}

z_{1}\cdot z_{2}=3\cdot e^{\frac{2\pi}{3}\cdot i}\cdot 2\cdot e^{\frac{\pi}{3}\cdot i}=3\cdot 2 \cdot e^{\frac{2\pi}{3}\cdot i+\frac{\pi}{3}\cdot i}=6e^{\pi}=6(cos(\pi)+i\cdot sin(\pi))=-6\cdot (1+0i)

\frac{z_{1}}{ z_{2}}=\frac{3\cdot e^{\frac{2\pi}{3}\cdot i}}{2\cdot e^{\frac{\pi}{3}\cdot i}}=\frac{3}{2} \cdot e^{\frac{2\pi}{3}\cdot i-\frac{\pi}{3}\cdot i}=\frac{3}{2}\cdot e^{\frac{\pi}{3}\cdot i}=\frac{3}{2}\cdot (cos\frac{\pi}{3}+i\cdot sin\frac{\pi}{3})=

=\frac{3}{2}\cdot (\frac{1}{2}+i\cdot \frac{\sqrt{3}}{2})=\frac{3}{4}+i\cdot \frac{\sqrt{3}}{4}
✎ к задаче 53501
1)
функция u переводит х в (2x-1)
u: x → (2x-1)=u

функция f переводит u в u^2

f: (2x-1) → (2x-1)^2

f(u(x))=(2x-1)^2

2)
функция u переводит х в x^2
u: x → x^2=u

функция f переводит u в 2u-1

f: x^2 → (2x^2-1)

f(u(x))=2x^2-1

3)
функция u переводит х в (x-4)
u: x → (x-4)=u

функция f переводит u в sqrt(u)

f: (x-4) → sqrt(x-4)

f(u(x))=sqrt(x-4)

4)
функция u переводит х в sqrt(x)
u: x → sqrt(x)=u

функция f переводит u в sqrt(u)

f: sqrt(x) → sqrt(x)-4

f(u(x))=sqrt(x)-4

5)
функция u переводит х в (x^2-1)
u: x → x^2-1=u

функция f переводит u в 3-2sqrt(u)

f: x^2 -1 → 3-2sqrt(x^2-1)

f(u(x))= 3-2sqrt(x^2-1)

6)
функция u переводит х в (3-2sqrt(x))
u: x → 3-2sqrt(x)=u

функция f переводит u в (u^2-1)

f: 3-2sqrt(x) → (3-2sqrt(x))^2-1

f(u(x))=(3-2sqrt(x))^2-1
✎ к задаче 53500
15.7
1)
arccos 0=\frac{\pi}{2}, так как

cos\frac {\pi}{2}=0 и \frac {\pi}{2}\in [0;\pi ]

2)
arccos 1=0, так как

cos0=1 и 0\in [0;\pi ]

3)
arccos (-\frac{\sqrt{2}}{2})=\pi-arccos\frac{\sqrt{2}}{2}=\pi-\frac {\pi}{4}=\frac{3 \pi}{4}, так как
cos\frac {\pi}{4}=\frac{\sqrt{2}}{2} и \frac {\pi}{4}\in [0;\pi ]
и
cos\frac {3\pi}{4}=-\frac{\sqrt{2}}{2} и \frac {3\pi}{4}\in [0;\pi ]

4)
arccos (-\frac{\sqrt{3}}{2})=\pi-arccos\frac{\sqrt{3}}{2}=\pi-\frac {\pi}{6}=\frac{5 \pi}{6}, так как
cos\frac {\pi}{6}=\frac{\sqrt{3}}{2} и \frac {\pi}{6}\in [0;\pi ]
и
cos\frac {5\pi}{6}=-\frac{\sqrt{3}}{2} и \frac {5\pi}{6}\in [0;\pi ]

15.8

1)
arctg 1=\frac {\pi}{4}, так как
tg\frac {\pi}{4}=1 и \frac {\pi}{4}\in [-\frac {\pi}{2};\frac {\pi}{2}]

2)
arctg 0=0, так как
tg0=0 и 0 \in [-\frac {\pi}{2};\frac {\pi}{2}]

3)
arctg (-1)=-\frac {\pi}{4}, так как
tg(-\frac {\pi}{4})=-1 и -\frac {\pi}{4}\in [-\frac {\pi}{2};\frac {\pi}{2}]

4)
arctg (-\frac{\sqrt{3}}{3})=-\frac {\pi}{6}, так как
tg(-\frac {\pi}{6})=-\frac{\sqrt{3}}{3} и -\frac {\pi}{6}\in [-\frac {\pi}{2};\frac {\pi}{2}]


15.4
1)
arccos (-\frac{\sqrt{2}}{2})+arcsin(-\frac{1}{2})=\frac{3 \pi}{4}+(-\frac {\pi}{6})=-\frac {7 \pi}{12}

Так как
arccos (-\frac{\sqrt{2}}{2})=\pi - arccos\frac{\sqrt{2}}{2}=\pi-\frac {\pi}{4}=\frac{3 \pi}{4},

cos\frac {3\pi}{4}=-\frac{\sqrt{2}}{2} и \frac {3\pi}{4}\in [0;\pi ]

arcsin(-\frac{1}{2})=-\frac {\pi}{6},

sin(-\frac {\pi}{6})=-\frac{1}{2} и -\frac {\pi}{6}\in [-\frac {\pi}{2};\frac {\pi}{2}]


2)
arccos (-\frac{\sqrt{3}}{2})-arcsin(\frac{\sqrt{3}}{2})=\frac{5 \pi}{6}-\frac {\pi}{3}=\frac { \pi}{2}

3)
arccos(0,5)+arcsin(-1)=\frac{\pi}{3}-\frac {\pi}{2}=-\frac { \pi}{6}

4)
arccos (\frac{\sqrt{3}}{2})-arcsin(-\frac{\sqrt{2}}{2})=\frac{ \pi}{6}-(-\frac {\pi}{4})=\frac { 5\pi}{12}

15.17
1)
2arcsin \frac{\sqrt{3}}{2}-3arctg(-\frac{\sqrt{3}}{3})+arccos (-\frac{\sqrt{3}}{2})-2arctg(-1)=2\cdot \frac { \pi}{6} -3\cdot (-\frac { \pi}{6})+\frac{5 \pi}{6}-2\cdot (-\frac{ \pi}{4})=

=\frac{13 \pi}{6}

2)
arccos (-\frac{\sqrt{2}}{2})+2arctg(-\sqrt{3}+arcsin (-\frac{\sqrt{3}}{2})+arctg1= -\frac {3 \pi}{4}+2\cdot (-\frac {\pi}{3})+(-\frac {\pi}{3})+\frac {\pi}{4}=-\frac{3 \pi}{2}
(прикреплено изображение)
✎ к задаче 53499