[m]\left\{\begin{matrix} x>0\\ 4-x >0 \end{matrix}\right.[/m] x ∈ (0;4)
Раскрываем модуль по определению:
[m]\left\{\begin{matrix} \frac{1}{3\sqrt{x}}-\frac{1}{\sqrt{4-x}}\geq 0\\\frac{1}{3\sqrt{x}}+\frac{1}{\sqrt{4-x}} +\frac{1}{3\sqrt{x}}-\frac{1}{\sqrt{4-x}}+a\leq 0 \end{matrix}\right.[/m]
или
[m]\left\{\begin{matrix} \frac{1}{3\sqrt{x}}-\frac{1}{\sqrt{4-x}}<0 0\\\frac{1}{3\sqrt{x}}+\frac{1}{\sqrt{4-x}} -\frac{1}{3\sqrt{x}}+\frac{1}{\sqrt{4-x}}+a\leq 0 \end{matrix}\right.[/m]
[m]\left\{\begin{matrix} \frac{\sqrt{4-x}-3\sqrt{x}}{3\sqrt{x}\cdot \sqrt{4-x}}\geq 0\\ 2\cdot \frac{1}{3\sqrt{x}}+a\leq 0 \end{matrix}\right.[/m]или[m]\left\{\begin{matrix} \frac{\sqrt{4-x}-3\sqrt{x}}{3\sqrt{x}\cdot \sqrt{4-x}} < 0\\2\cdot \frac{1}{\sqrt{4-x}} +a\leq 0 \end{matrix}\right.[/m]
При x ∈ (0;4)
[m] \sqrt{x} >0[/m] и [m] \sqrt{4-x} >0[/m]
[m]\left\{\begin{matrix} \sqrt{4-x}-3\sqrt{x}\geq 0\\ 2\cdot \frac{1}{3\sqrt{x}}+a\leq 0 \end{matrix}\right.[/m]или[m]\left\{\begin{matrix} \sqrt{4-x}-3\sqrt{x}< 0\\2\cdot \frac{1}{\sqrt{4-x}} +a\leq 0 \end{matrix}\right.[/m]
[m]\left\{\begin{matrix} \sqrt{4-x}\geq 3\sqrt{x}\\ -2\cdot \frac{1}{3\sqrt{x}}\geq a \end{matrix}\right.[/m]или[m]\left\{\begin{matrix} \sqrt{4-x}<3\sqrt{x}\\-2\cdot \frac{1}{\sqrt{4-x}} \geq a \end{matrix}\right.[/m]
[m]\left\{\begin{matrix} 4-x\geq 9 \cdot x\\ -2\cdot \frac{1}{3\sqrt{x}}\geq a \end{matrix}\right.[/m]или[m]\left\{\begin{matrix} 4-x<9\cdot x\\-2\cdot \frac{1}{\sqrt{4-x}} \geq a \end{matrix}\right.[/m]
[m]\left\{\begin{matrix} x\leq 0,4\\ -2\cdot \frac{1}{3\sqrt{x}}\geq a \end{matrix}\right.[/m]или[m]\left\{\begin{matrix} x>0,4\\-2\cdot \frac{1}{\sqrt{4-x}} \geq a \end{matrix}\right.[/m]
C учетом x ∈ (0;4)
[m]\left\{\begin{matrix} 0 < x\leq 0,4\\ -2\cdot \frac{1}{3\sqrt{x}}\geq a \end{matrix}\right.[/m]или[m]\left\{\begin{matrix} 0,4<x<4\\-2\cdot \frac{1}{\sqrt{4-x}} \geq a \end{matrix}\right.[/m]
[m]\left\{\begin{matrix} 0 < x\leq 0,4\\ -\infty < -2\cdot \frac{1}{3\sqrt{x}} \leq- \frac{\sqrt{10}}{3}\\ -2\cdot \frac{1}{3\sqrt{x}} \geq a\end{matrix}\right.[/m]или[m]\left\{\begin{matrix} 0,4<x<4\\ -\infty <-2\cdot \frac{1}{\sqrt{4-x}} \leq - \frac{\sqrt{10}}{3}\\-2\cdot \frac{1}{\sqrt{4-x}} \geq a \end{matrix}\right.[/m]
см. риc.
Единственное решение при а=[m]- \frac{\sqrt{10}}{3}[/m]
О т в е т. a=[m]- \frac{\sqrt{10}}{3}[/m]