✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 528 Число P равно произведению 11 различных

УСЛОВИЕ:

Число P равно произведению 11 различных натуральных чисел, больших 1. Какое наименьшее число натуральных делителей (включая единицу и само число) может иметь число P?

РЕШЕНИЕ:

Любое натуральное число N представимо в виде произведения
N = (p1^k1)*(p2^k2)*... и т.д.,
где p1, p2 и т.д. - простые числа, а k1, k2 и т.д. - целые неотрицательные числа.

Например,
15 = (3^1)*(5^1)
72 = 8*9 = (2^3)*(3^2)

Так вот, общее количество натуральных делителей числа N равно
(k1+1)*(k2+1)*...

Итак, по условию, P = N1*N2*...*N11, где
N1 = (p1^k[1,1])*(p2^k[1,2])*...
N2 = (p1^k[2,1])*(p2^k[2,2])*...
...,
а это значит, что
P = (p1^(k[1,1]+k[2,1]+...+k[11,1]))*(p2^(k[1,2]+k[2,2]+...+k[11,2]))*...,

и общее количество натуральных делителей числа P равно

(k[1,1]+k[2,1]+...+k[11,1]+1)*(k[1,2]+k[2,2]+...+k[11,2]+1)*...

Это выражение принимает минимальное значение, если все числа N1...N11 являются последовательными натуральными степенями одного и того же простого числа, начиная с 1: N1 = p, N2 = p^2, ... N11 = p^11.

То есть, например,
N1 = 2^1 = 2,
N2 = 2^2 = 4,
N3 = 2^3 = 8,
...
N11 = 2^11 = 2048.

Тогда количество натуральных делителей числа P равно
1+(1+2+3+...+11) = 67.

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

67

Добавил slava191, просмотры: ☺ 2185 ⌚ 29.01.2014. математика 10-11 класс

Решения пользователелей

Хочешь предложить свое решение? Войди и сделай это!
Увы, но свой вариант решения никто не написал... Будь первым!

Написать комментарий

Последние решения
Линейное неоднородное дифференциальное уравнение второго постоянными коэффициентами.

Решаем однородное дифференциальное уравнение второго постоянными коэффициентами.
y'' –4y'+8y=0

Составляем характеристическое уравнение:
k^2 –4k+8=0
D=16-32=-16
sqrt(D)=4i

k_(1)=2-2i;k_(2)=2+2i;

α =2
β=2

y_(общ одн) находят по формуле:
y_(общ одн)=e^( α x)*(C_(1)cosβx+С_(2)sinβx)


y_(част неодн)=e^(x)(Asinx+Bcosx)
[удалить]
✎ к задаче 38401
Замена
y``=z
тогда
y```=z`

xz`-z=sqrt(x) - линейное уравнение вида
z`-p(x)z=q(x)

Решается методом Бернулли (z=u*v) или методом вариаций.

z=y``

y`= ∫ zdx

y``= ∫ y`dx
[удалить]
✎ к задаче 38399
Применяем радикальный признак Коши:

lim_(n→∞ ) (a_(n))^(1/n)= lim_(n→∞ )(n+1)/(2n+1) =1/2 < 1

Ряд сходится

[удалить]
✎ к задаче 38413
Ионная
Во всех соединениях неметаллов с металлами
[удалить]
✎ к задаче 38415
2x^2+y^2=4 ⇒ выразим y^2=4-2x^2

Тогда
4x+y^2=4x+4-2x^2 - квадратный трехчлен, который принимает наибольшее значение при x=1
( в вершине параболы, абсцисса вершины х_(o)=-b/2a)

4*1+4-2*1^2= [b]6[/b] - максимальное значение, которое может принимать выражение 4x + y^2.


2x^2+y^2=4 ⇒ выразим x^2=(4-y^2)/2

x= ± sqrt((4-y^2)/2)

Наименьшее значение выражение
4x+y^2 принимает при x=-sqrt((4-y^2)/2)

х < 0 при любом |y|≤ 2

Чтобы сумма отрицательного числа и неотрицательного (y^2)
принимала наименьшее значение надо, чтобы y^2=0 ⇒

x=-sqrt((4-0)/2)=-sqrt(2)

4x+y^2=4*(-sqrt(2))+0= [b]-4sqrt(2) [/b] - минимальное значение, которое может принимать выражение 4x + y^2.
[удалить]
✎ к задаче 38412