ЗАДАЧА 528 Число P равно произведению 11 различных

УСЛОВИЕ:

Число P равно произведению 11 различных натуральных чисел, больших 1. Какое наименьшее число натуральных делителей (включая единицу и само число) может иметь число P?

РЕШЕНИЕ:

Любое натуральное число N представимо в виде произведения
N = (p1^k1)*(p2^k2)*... и т.д.,
где p1, p2 и т.д. - простые числа, а k1, k2 и т.д. - целые неотрицательные числа.

Например,
15 = (3^1)*(5^1)
72 = 8*9 = (2^3)*(3^2)

Так вот, общее количество натуральных делителей числа N равно
(k1+1)*(k2+1)*...

Итак, по условию, P = N1*N2*...*N11, где
N1 = (p1^k[1,1])*(p2^k[1,2])*...
N2 = (p1^k[2,1])*(p2^k[2,2])*...
...,
а это значит, что
P = (p1^(k[1,1]+k[2,1]+...+k[11,1]))*(p2^(k[1,2]+k[2,2]+...+k[11,2]))*...,

и общее количество натуральных делителей числа P равно

(k[1,1]+k[2,1]+...+k[11,1]+1)*(k[1,2]+k[2,2]+...+k[11,2]+1)*...

Это выражение принимает минимальное значение, если все числа N1...N11 являются последовательными натуральными степенями одного и того же простого числа, начиная с 1: N1 = p, N2 = p^2, ... N11 = p^11.

То есть, например,
N1 = 2^1 = 2,
N2 = 2^2 = 4,
N3 = 2^3 = 8,
...
N11 = 2^11 = 2048.

Тогда количество натуральных делителей числа P равно
1+(1+2+3+...+11) = 67.
ВОПРОСЫ ПО РЕШЕНИЮ?
НАШЛИ ОШИБКУ?
отправить + регистрация в один клик
опубликовать + регистрация в один клик

ОТВЕТ:

67

Нужна помощь?

Опубликовать

Добавил slava191 , просмотры: ☺ 1639 ⌚ 29.01.2014. математика 10-11 класс
КОД ВСТАВКИ

РЕШЕНИЯ ПОЛЬЗОВАТЕЛЕЙ
Написать своё решение

Только зарегистрированные пользователи могут писать свои решения.
Увы, но свой вариант решения никто не написал... Будь первым!

НАПИСАТЬ КОММЕНТАРИЙ

Мы ВКонтакте
Последние решения

vk220074590 ✎ Приведём верное написание: вЕрховье—ПГ орнамЕнт—НГ отбИрает—ЧГ кОснулся—ЧГ вырАстающий—ЧГ Слово верховье проверяем словом верх. Ответ: верховье. к задаче 26838

vk220074590 ✎ Найдем вероятность того, что неисправны оба автомата. Эти события независимые, вероятность их произведения равна произведению вероятностей этих событий: 0,05 · 0,05 = 0,0025. Событие, состоящее в том, что исправен хотя бы один автомат, противоположное. Следовательно, его вероятность равна 1 − 0,0025 = 0,9975. Ответ: 0,9975. к задаче 26837

vk220074590 ✎ Поскольку биатлонист попадает в мишени с вероятностью 0,8, он промахивается с вероятностью 1 − 0,8 = 0,2. Cобытия попасть или промахнуться при каждом выстреле независимы, вероятность произведения независимых событий равна произведению их вероятностей. Тем самым, вероятность события «попал, попал, попал, промахнулся, промахнулся» равна 0,8*0,8*0,8*0.2*0,2=0,02 Ответ:002 к задаче 26836

vk220074590 ✎ Возможность выиграть первую и вторую партию не зависят друг от друга. Вероятность произведения независимых событий равна произведению их вероятностей: 0,5 · 0,3 = 0,15. Ответ: 0,15. к задаче 26835

vk220074590 ✎ log3 (x+7) < log3 (5-x) + log3 (3-x) ОДЗ: (-7:3) log3(x+7)/(5-x)(3-x) < 0 ((x+7)/(5-x)(3-x)-1) < 0 (-x^2+9x-8)/(x^2-8x+15) < 0 x^2-9x+8=0 x1=8 x2=1 если отметить точки на координатной прямой, то с учетом ОДЗ получится интервал (-7:1] Ответ : (-7:1] к задаче 26833