✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 527 Найдите сумму всех трехзначных

УСЛОВИЕ:

Найдите сумму всех трехзначных натуральных чисел n, таких, что первая и последняя цифры числа n^2 равны 1

РЕШЕНИЕ:

Последняя цифра квадрата - 1, значит последняя цифра самого числа - 9 либо 1.

100 меньше или равно n меньше или равно 999
10000 меньше или равно n^2 < 999999

Если n^2 пятизначное, то, учитывая, что первая цифра квадрата - 1,
10000 меньше или равно n^2 меньше или равно 19999
100 меньше или равно n меньше или равно 141

101, 109, 111, 119, 121, 129, 131, 139, 141

Если n^2 шестизначное, то, учитывая, что первая цифра квадрата - 1,
100000 меньше или равно n^2 меньше или равно 199999

316 < n < 448

319,441 и пары 32x, 33x, 34x, 35x, 36x, 37x, 38x, 39x, 40x, 41x, 42x, 43x, где x - 1,9.

Сумма каждой пары даст 650, 670, ... , 870

Суммируем парами: 210+230+250+270+141=(по арифм. прогрессии)=141+960=1101
319+441+650+...+870=319+441+(650+870)/2*12=9120+319+441=9120+760=9880

Итого: 9880+1101=10981

Вопрос к решению?
Нашли ошибку?

ОТВЕТ:

10981

Добавил slava191, просмотры: ☺ 2824 ⌚ 29.01.2014. математика 10-11 класс

Решения пользователей

Увы, но свой вариант решения никто не написал... Будь первым!
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 40729
задача на применение формулы Байеса (Бейеса)

Вводим в рассмотрение две гипотезы
H_(1) - коробка с лампочками
H_(2) - коробка с с электроникой.

Всего коробок - 9

p(H_(1))=5/9
p(H_(2))=4/9

Событие А - "выбранная наугад [i]коробка[/i] в результате транспортировки [i]оказалась повреждена[/i]"

p(A)=p(H_(1))*p(A/H_(1))+p(H_(2))*p(A/H_(2))- формула полной вероятности

По условию
p(A/H_(1))=1/2
p(A/H_(2))=2/3

p(A)=\frac{5}{9}\cdot \frac{1}{2}+\frac{4}{9}\cdot \frac{2}{3}=\frac{31}{54}

Так как
[b]р(H_(2)/A)*p(A)=p(H_(2))*p(A/H_(2))[/b] ⇒ формула Байеса:

р(H_{2}/A)=\frac{p(H_{2})\cdot p(A/H_{2})}{p(A)}



О т в е т. р(H_{2}/A)=\frac{\frac{4}{9}\cdot \frac{2}{3}}{\frac{31}{54}}=\frac{16}{31}
✎ к задаче 40726
(прикреплено изображение)
✎ к задаче 40717
(прикреплено изображение)
✎ к задаче 40727
(прикреплено изображение)
✎ к задаче 40725