Задать свой вопрос   *более 50 000 пользователей получили ответ на «Решим всё»

Задача 52545 решить систему { (-6y - x - 6)/(-3y +...

Условие

решить систему

{ (-6y - x - 6)/(-3y + 2x - 1)= -3y - x,
{ 9^(-3y - 2x) + 27 = 12 * 3^(-3y) * 3^(2x)

математика 705

Решение

{[m]\frac{-6y-x-6}{-3y+2x-1}=-3y-x[/m]
{(3^2)^(-3y+2x)+27=12*3^(-3y+2x); замена переменной: 3^(-3y+2x)=t; t>0

t^2-12t+27=0 ⇒ (t-9)(t-3)=0 ⇔ 3^(-3y+2x)=3^2 или 3^(-3y+2x)=3

Две системы.

Первая:
{[m]\frac{-6y-x-6}{-3y+2x-1}=-3y-x[/m]
{3^(-3y+2x)=3^2 ⇒ -3y+2x=2 ⇒ -3y+2x-1=1 подставляем в первое уравнение:

-6y-x-6=-3y-x ⇒ -6y+3y=6 ⇒ y=-2

-3*(-2)+2x=2

x=-2

(-2;-2)


Вторая:

{[m]\frac{-6y-x-6}{-3y+2x-1}=-3y-x[/m]
{3^(-3y+2x)=3 ⇒ -3y+2x=1 ⇒ знаменатель первой дроби равен 0, первое уравнение не имеет смысла


О т в е т. (-2;-2)

Написать комментарий

Меню

Присоединяйся в ВК