Универсальная подстановка
tg(x/2)=t
x/2= arctgt
x=2arctgt
dx=2dt/(1+t2)
sinx=2t/(1+t2)
cosx=(1–t2)/·(1+t2)
3cosx+sinx–2=3·(1–t2)/(1+t2) + 2t/(1–t2)–2)=(3–3t2+2t–2–2t2)/(1+t2)
∫ dx/(3cosx+sinx–2)= ∫ 2dt/(1–5t2+2t)=–(2/5) ∫ dt/(t–(1/5)2–6/25)=
=(–2/5)·(5/2√6)ln|(t–√6/25)/(t+√6/25|+C=
=(–1/√6)ln|(5tg(x/2)–√6)/(5tg(x/2)+√6)|+C