x=2sint; dx=2costdt
∫ √4–x2dx= ∫ √4–4sin2t·2costdt= ∫ 2cost·2costdt=
=4 ∫cos2tdt= 2 ∫ (1+cos2t)dt=2t+2·(1/2)sin2t+C=
sint=x/2 ⇒ t=arcsin(x/2)
cost=√1–sin2t=√1–(x/2)2=√4–x2/2
sin2t=2sint·cost=2·(x/2)·√4–x2/2=x·√4–x2/2
=2·arcsin(x/2)+(x·√4–x2/2)+C