x→1
Раскладываем и числитель и знаменатель на множители:
x2–3x+2=0
D=9–4·2=1
x1=1; x2=2
x2–3x+2=(x–1)(x–2)
–3x2–x+4=0
3x2+x–4=0
D=12–4·3·(–4)=49
x3=–4/3; x4=1
3x2+x–4=3·(x–1)(x–(–4/3))=(x–1)·(3x+4)
4–x–3x2=–(x–1)(3x+4)
limx → 1[m]\frac{x^2-3x+2}{4-x-3x^2}=[/m]limx → 1[m]\frac{(x-1)(x-2)}{-(x-1)(3x+4)}=[/m]
=limx → 1[m]\frac{x-2}{-(3x+4)}=\frac{1-2}{-(3+4)}=\frac{1}{7}[/m]
–3x2–x–4=––3(x–1)(x–4/3
limx → 1((x–1)(x–2)/((x–1)(+3x+4))=limx → 1((1–2))/(–(3+4)=1/7
Ответ:1/7