x–>∞
[m]=\lim_{x \to \infty }(\frac{x+2}{x+4})^{5x}\lim_{x \to \infty }(\frac{x+2}{x+4})^{-3}=[/m]
[m]=\lim_{x \to \infty }(\frac{x+2}{x+4})^{5x}\cdot 1=\lim_{x \to \infty }(\frac{\frac{x+2}{x}}{\frac{x+4}{x}})^{5x}=[/m]
[m]=\lim_{x \to \infty }\frac{(1+\frac{2}{x})^{5x}}{(1+\frac{4}{x})^{5x}}=\frac{e^{10}}{e^{20}}=e^{-10}[/m]