✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 52082 13 задание. Профиль

УСЛОВИЕ:

13 задание. Профиль

Добавил tunerokk, просмотры: ☺ 326 ⌚ 2020-06-02 21:51:22. математика класс не задан класс

Решения пользователей

РЕШЕНИЕ ОТ vk397114329

ОДЗ: 2sinx>0; sinx>0; 2pik<x<pi+2pik
Замена: log_2(2sinx)=t, тогда уравнение примет вид
2t^2-3t+1=0 Сумма 2-3+1=0,поэтому t1=1; t2=1/2
Обратная замена:1) log_2(2sinx)=1; 2sinx=2^1; sinx=1; x=pi/2+2pik,k ∈ z, 2)log_2(2sinx)=1/2; 2sinx=sqrt(2); sinx=sqrt2/2 ;получаем корни
1)x=pi/4+2pik и 2) x=3pi/4+2pik,k ∈ z
Корни уравнения принадлежащие промежутку условию отберем
решив неравенства:
1) x=pi/2+2pik,k ∈ z ( выполняем последовательно три действия:
1)Делим все части неравенства на PI>0
2) Вычитаем первое слагаемое (уединяем 2pik)
3)делим на 2 (в каждом случае)
-pi/2 ≤ pi/2+2pik ≤ pi ;-1/2 ≤ k ≤ 1/4, отсюда k=0 следовательно x=pi/2
-pi/2 ≤ pi/4+2pik ≤ pi; -3/8 ≤ k ≤ 3/8, отсюда k=0,следовательно x=pi/4
-pi ≤ 3pi/4=2pik ≤ pi; -5/4 ≤ k ≤ 1/8; отсюда k=0, следовательно x=3pi/4
Ответ:a)pi/2+2pik:pi/4+2pik, 3pi/4+2pik,k ∈ z
б) Учитывая одз получаем корни: pi/4;pi/2; 3pi/4.

Вопрос к решению?
Нашли ошибку?

РЕШЕНИЕ ОТ laalkek

Вопрос к решению?
Нашли ошибку?
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
(прикреплено изображение)
✎ к задаче 52840
111
✎ к задаче 51554
3(sin^(2)53°-cos^(2) 53°)/cos106° =
=-3(-sin^(2)53° +cos^(2)53°/cos106°=
cos2x=cos^(2)x-sin^(2)x
=-3 × cos2 × 51°/cos106°= -3×cos106°/cos106°=-3
✎ к задаче 8856
{1-ctgx ≥ 0 ⇒ ctgx ≤ 1 ⇒ ( π/4)+πn ≤ x<π+πn, n ∈ Z
{1-tgx ≥ 0 ⇒ tgx ≤ 1 ⇒ (-π/2)+πk < x ≤( π/4)+πk , k ∈ Z
{sinx ≠ 0
{cosx ≠ 0


Возводим в квадрат:
(1-сtgx)*sin^2x=(1-tgx)*cos^2x

ctgx=1/tgx

(tgx-1)*(sin^2x/tgx)=(1-tgx)*cos^2x

(tgx-1)*(sinx*cosx+cos^2x)=0

tgx-1=0 или sinx+cosx=0

tgx=1 или tgx=-1

x=(π/4)+πm, m ∈ Z или x=-(π/4)+πm, m ∈ Z ⇒

х= ± (π/4)+πm, m ∈ Z входит в ОДЗ

О т в е т [b]± (π/4)+πm, m ∈ Z[/b]
✎ к задаче 52832
Решаем систему способом подстановки:

{Ах+By+C=0 ⇒ y=-(A/B)x-C/A
{x^2-y^2=a^2

{y=-(A/B)x-C/A
{x^2-(-(A/B)x-C/A)^2=a^2 ⇒ (A^2+B^2)x^2+2ACx+C^2-a^2B^2=0

A^2+B^2 ≠ 0, тогда уравнение квадратное.

Квадратное уравнение имеет одно решение ⇔ D=0

D=(2AC)^2-4*(A^2+B^2)*(C^2-a^2B^2)=0 ⇒

[b]a^2(A^2+B^2)=C^2[/b] при A^2+B^2 ≠ 0
✎ к задаче 52834