✎ Задать свой вопрос   *более 30 000 пользователей получили ответ на «Решим всё»

Задача 51988 Исследовать на непрерывность функции,

УСЛОВИЕ:

Исследовать на непрерывность функции, найти точки разрыва и определить их тип. Построить схематические графики функций.

РЕШЕНИЕ ОТ sova ✪ ЛУЧШЕЕ РЕШЕНИЕ

На (- ∞ ;-1) функция непрерывна, так как y=-x^2+2 непрерывна на (- ∞ ;+ ∞ )

На (-1;0) функция непрерывна, так как y=3x+2 непрерывна на (- ∞ ;+ ∞ )

На (0;+ ∞ ) функция непрерывна, так как y=2 непрерывна на (- ∞ ;+ ∞ )

Значит, надо исследовать непрерывность функции в точках х=-1 и х=0

х=0

Находим [green]предел слева:[/green]
lim_(x →-1 -0)f(x)=lim_(x →-1 -0)(-x^2+2)=-1+2=1

Находим [red]предел справа:[/red]
lim_(x → -1+0)f(x)=lim_(x → -1+0)(3x+2)=-1
предел слева ≠ пределу справа

Значит, не существует предела функции в точке х=-1

Определение непрерывности не выполняется

х=-1 - [i]точка разрыва первого рода [/i]

В точке существует [i]конечный[/i] скачок



х=0
Находим [green]предел слева:[/green]
lim_(x → -0)f(x)=lim_(x → -0)(3x+2)=2

Находим [red]предел справа[/red]:
lim_(x → +0)f(x)=lim_(x → +0)(2)=2

предел слева = пределу справа
Предел в точке x=1 существует и равен значению функции в этой точке


х=1 - [i]точка непрерывности[/i]



2.
|x+6|=-x-6, при x <-6

|x+6|=x+6, при x >-6


[m]y=\left\{\begin{matrix} -1, x<-6\\1,x>-6 \end{matrix}\right.[/m]

Функция непрерывна на (- ∞ ;-6) и на (-6;+ ∞ )

В точке х=-6 функция имеет[b] разрыв первого рода
[/b]
предел слева ≠ пределу справа

Значит, не существует предела функции в точке х=-1

Определение непрерывности не выполняется


В точке существует [i]конечный[/i] скачок

Вопрос к решению?
Нашли ошибку?

Добавил 89526809080, просмотры: ☺ 118 ⌚ 2020-05-31 12:39:06. предмет не задан 1k класс

Решения пользователей

Лучший ответ к заданию выводится как основной
Хочешь предложить свое решение? Войди и сделай это!

Написать комментарий

Последние решения
111
✎ к задаче 51554
3(sin^(2)53°-cos^(2) 53°)/cos106° =
=-3(-sin^(2)53° +cos^(2)53°/cos106°=
cos2x=cos^(2)x-sin^(2)x
=-3 × cos2 × 51°/cos106°= -3×cos106°/cos106°=-3
✎ к задаче 8856
{1-ctgx ≥ 0 ⇒ ctgx ≤ 1 ⇒ ( π/4)+πn ≤ x<π+πn, n ∈ Z
{1-tgx ≥ 0 ⇒ tgx ≤ 1 ⇒ (-π/2)+πk < x ≤( π/4)+πk , k ∈ Z
{sinx ≠ 0
{cosx ≠ 0


Возводим в квадрат:
(1-сtgx)*sin^2x=(1-tgx)*cos^2x

ctgx=1/tgx

(tgx-1)*(sin^2x/tgx)=(1-tgx)*cos^2x

(tgx-1)*(sinx*cosx+cos^2x)=0

tgx-1=0 или sinx+cosx=0

tgx=1 или tgx=-1

x=(π/4)+πm, m ∈ Z или x=-(π/4)+πm, m ∈ Z ⇒

х= ± (π/4)+πm, m ∈ Z входит в ОДЗ

О т в е т [b]± (π/4)+πm, m ∈ Z[/b]
✎ к задаче 52832
Решаем систему способом подстановки:

{Ах+By+C=0 ⇒ y=-(A/B)x-C/A
{x^2-y^2=a^2

{y=-(A/B)x-C/A
{x^2-(-(A/B)x-C/A)^2=a^2 ⇒ (A^2+B^2)x^2+2ACx+C^2-a^2B^2=0

A^2+B^2 ≠ 0, тогда уравнение квадратное.

Квадратное уравнение имеет одно решение ⇔ D=0

D=(2AC)^2-4*(A^2+B^2)*(C^2-a^2B^2)=0 ⇒

[b]a^2(A^2+B^2)=C^2[/b] при A^2+B^2 ≠ 0
✎ к задаче 52834
№3 ответ 2 т.к. ω = 2Pi* ν , x = A*sin( ω t+ φ )
№2 ответ 500 (решение прикреплено)
(прикреплено изображение)
✎ к задаче 52821