Дано u = x ln(xy). Найти ∂³u / ∂x²∂y
∂u/∂x=(x)`·ln(xy)+x·(ln(xy))`x=ln(xy)+x·(1/(xy))·(xy)`x =ln(xy)+(xy)/(xy)=ln(xy) ∂2u/∂x2=(ln(xy))`x=(1/(xy)) · (xy)`x=(y/xy)=1/x ∂3u/∂x2∂y =(1/x)`y=0 ∂u/∂y=x·(1/xy)·(xy)`y=x2/xy=x/y ∂2u/∂y∂x=(x/y)`x=(1/y) ∂3u/ ∂y∂x2=(1/y)`x=0